Skip to main content
Log in

The fatty acid composition of glycerolipids in nerve, brain, and other tissues of the streptozotocin diabetic rat

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The fatty acid composition of individual glycerolipids in brain and sciatic nerve of rats made diabetic with streptozotocin and sacrificed 8 weeks later was determined and compared to the alterations that occurred in liver and kidney glycerlipids. A substantial decrease in the proportion of arachidonic acid and increases in the relative content of linoleic and docosahexenoic (22∶6n3) acids occurred in the phosphoglycerides of visceral tissues from diabetic animals as reported by others. In contrast, except for a small rise in the percentage of linoleic acid, no consistent changes in fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, ethanolamine plasmalogen, phosphatidylinositol or phosphatidylerrine from brain or nerve were detected. The fatty acids of triacylglycerol associated with nerve exhibited alterations similar to those characteristic of liver. The differences which developed as a result of diabetes were completely prevented if animals were maintained continuously on insulin commencing shortly after administration of streptozotocin. It is concluded that the fatty acid composition of brain and nerve phosphoglycerides are unusually resistant to alteration in the diabetic animal and that consequently, changes in bulk membrane fluidity are unlikely to contribute to functional abnormalities displayed by diabetic peripheral nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

EP:

ethanolamine plasmalogen

PS:

phosphatidylserine

PI:

phosphatidylinositol

References

  1. Thomas, P. K., andEliasson, S. G. 1984. Diabetic neuropathy. Pages 1773–1810,in Dyck, P. J., Thomas, P. K. Lambert, E. H., andBunge, R. (eds). Peripheral Neuropathy (2nd ed) W. B. Saunders, Philadelphia.

    Google Scholar 

  2. Eliasson, S. J. 1964. Nerve conduction changes in experimental diabetes. J. Clin. Invest. 43:2353–2358.

    Google Scholar 

  3. Sharma, A. K., andThomas, P. K. 1974. Peripheral nerve structure and function in experimental diabetes. J. Neurol. Sci. 23:1–15.

    Google Scholar 

  4. Fraser, D. M., Campbell, I. W., Ewing, D. J., Murray, A., Neilson, G. M. M., andClarke, B. F. 1977. Peripheral and autonomic nerve function in newly diagnosed diabetes melitus. Diabetes 26:546–550.

    Google Scholar 

  5. Clements, R. S. 1979. Diabetic neuropathy: New concepts of its etiology. Diabetes 28:604–611.

    Google Scholar 

  6. Greene, D. A. 1983. Metabolic abnormalities in diabetic peripheral nerve: Relation to impaired function. Metabolism 32:Suppl. 1:118–123.

    Google Scholar 

  7. Brown, M. J., Iwamori, M., Kishimoto, Y., Rapoport, R., Moser, H. W., andAsbury, A. K. 1979. Nerve lipid abnormalities in human diabetic neuropathy: A correlative study. Ann. Neurol. 5:245–252.

    Google Scholar 

  8. Eliasson, S. G. 1966. Lipid synthesis in peripheral nerve from alloxan diabetic rats. Lipids 1:237–240.

    Google Scholar 

  9. Spritz, N., Singh, H., andMarinan, B. 1975. Metabolism of peripheral nerve myelin in experimental diabetes. J. Clin. Invest. 55:1049–1056.

    Google Scholar 

  10. Whiting, P. H., Palmano, K. P., andHawthorne, J. N. 1979. Enzymes of myoinositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes. Biochem. J. 179:549–553.

    Google Scholar 

  11. Hothersall, J. S., andMcLean, P. 1979. Effect of experimental diabetes and insulin on phosphatidylinositol synthesis in rat sciatic nerve. Biochem. Biophys. Res. Commun. 88:477–484.

    Google Scholar 

  12. Natarajan, V., Dyck, P. J., andSchmid, H. H. O. 1981. Alterations of inositol lipid metabolism of rat sciatic nerve in streptozotocin-induced diabetes. J. Neurochem. 36:413–419.

    Google Scholar 

  13. Bell, M. E., Peterson, R. G., andEichberg, J. 1982. Metabolism of phospholipids in peripheral nerve from rats with chronic streptozotocin-induced diabetes: Increased turnover of phosphatidylinositol-4,5-bisphosphate. J. Neurochem. 39:192–200.

    Google Scholar 

  14. Faas, F. H., andCarter, W. J. 1983. Altered microsomal phospholipid composition in the streptozotocin diabetic rat. Lipids 18:339–342.

    Google Scholar 

  15. Holman, R. T., Johnson, S. B., Gerrard, J. M., Mauer, S. M., Kupcho-Sandberg, S., andBrown, D. M. 1983. Arachidonic acid deficiency in streptozotocin-induced diabetes. Proc. Nat. Acad. Sci. 80:2375–2379.

    Google Scholar 

  16. Clarke, D. L., Hamel, F. G., andQueener, S. F. 1983. Changes in renal phospholipid fatty acids in diabetes melitus: Correlation with changes in adenylate cyclase activity. Lipids 18:696–705.

    Google Scholar 

  17. Huang, X. S., Horrosin, D. F., Manku, M. S., Mitchell, J., andRyan, M. A. 1984. Tissue phospholipid fatty acid composition in the diabetic rat. Lipids 19:367–370.

    Google Scholar 

  18. Folch, J., Lees, M., andSloane-Stanely, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.

    Google Scholar 

  19. Vitello, P., andZanetta, J. P. 1978. Thin-layer chromatography of phospholipids. J. Chromat. 166:637–640.

    Google Scholar 

  20. Horrocks, L. A. andSun, G. Y. 1972. Ethanolamine Plasmalogens Pages 223–231,in Marks, N., andRodnight, R. (eds.), Research Methods in Neurochemistry, Vol. 1, Plenum Press, New York.

    Google Scholar 

  21. Morrison, W. R. andSmith, L. M. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron trifluoride-methanol. J. Lipid Res. 5:600–608.

    Google Scholar 

  22. Klein, F., andMandel, P. 1976. Distribution of the fatty acids of the lipids of normal sciatic nerve of the rat. Biochimie 60:81–84.

    Google Scholar 

  23. Yao, J. K., Dyck, P. J., VanLoon, J. A., andMoyer, T. P. 1981. Free fatty acid composition of human and rat peripheral nerve. J. Neurochem. 36:1211–1218.

    Google Scholar 

  24. Holub, B. J., Kuksis, A. andThompson, W. 1970. Molecular species of mono-di- and triphosphoinositides of bovine brain. J. Lipid Res. 11, 558–564.

    Google Scholar 

  25. Yao, J. K., Natarajan, V., andDyck, P. J. 1980. The sequential alterations of endoneurial cholesterol and fatty acid in Wallerian degeneration. J. Neurochem. 35:933–940.

    Google Scholar 

  26. Peluffo, R., Hyola, S., andBrenner, R. R. 1970. Metabolism of fatty acids of the linoleic acid series in testicles of diabetic rats. Amer. J. Physiol. 218:669–673.

    Google Scholar 

  27. Eck, M. G., Wynn, J. O., Carter W. J., andFaas, F. H. 1979. Fatty acid desaturation in experimental diabetes melitus. Diabetes 28:479–485.

    Google Scholar 

  28. Pratt, J. H., Berry, J. F., Kaye, B., andGoetz, F. C. 1969. Lipid class and fatty acid composition of rat brain and sciatic nerve in alloxan diabetes. Diabetes: 18:556–561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special Issue dedicated to Dr. Eugene Kreps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CJ., Peterson, R. & Eichberg, J. The fatty acid composition of glycerolipids in nerve, brain, and other tissues of the streptozotocin diabetic rat. Neurochem Res 10, 1453–1465 (1985). https://doi.org/10.1007/BF00988859

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988859

Keywords

Navigation