Skip to main content
Log in

GABA uptake in embryonic palate mesenchymal cells of two mouse strains

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To obtain further evidence that the inhibitory neurotransmitter GABA functions in palate development, the presence of an active GABA uptake mechanism was sought using primary cultures of embryonic palate mesenchymal cells. Uptake was compared from cells of two inbred mouse strains in which the SWV strain shows greater sensitivity than the AJ strain to effects of GABA on palate morphogenesis and of diazepam in producing cleft palate (1). Palate cells were capable of accumulating [3H]GABA by saturable uptake mechanisms characteristic of a high and a low affinity active transport as indicated by temperature, Na+ ion and carrier dependence as well asK m andV max values that were comparable to other biological systems. TheV max of the high-affinity uptake system from cells of the SWV strain was 1.8 fold higher than that of the AJ. GABA uptake was also observed in fibroblasts from various sources including embryonic mouse limb cells, human skin fibroblasts and 3T3 cells When active GABA uptake was measured in skin fibroblasts from the mouse SWV and AJ strains, the rate of uptake from SWV cells under high affinity conditions was also 1.8 fold greater than in AJ cells. Thus active GABA uptake appears to be genetically regulated in non-neural cells which may contribute to differential resonses to GABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wee, E. L., andZimmerman, E. F. 1983. Involvement of GABA in palate morphogenesis and its relation to diazepam teratogenesis in two mouse strains. Teratology 28:15–22.

    PubMed  Google Scholar 

  2. Krnjevic, K. 1979. Adv. Exp. Med. Biol. 123, Pages 271–286,in Mandel, P., andDefeudis, F. V. (eds.), GABA-Biochemistry and CNS Functions, Plenum Press, New York.

    Google Scholar 

  3. Balcar, V. J., Mark, J., Borg, J., andMandel, P. 1979. High-affinity uptake of γ-aminobutyric acid in cultured glial and neuronal cells. Neurochem. Res. 4:339–354.

    Article  PubMed  Google Scholar 

  4. Schousboe, A., Hertz, L., andSvenneby, G. 1977. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres Neurochem. Res. 2:217–229.

    Article  Google Scholar 

  5. Okada, Y., Taniguchi, H., andShimada, C. 1976. High concentration of GABA and high glutamate decarboxylase activity in rat pancreatic islets and human insulinoma. Science 194:620–622.

    PubMed  Google Scholar 

  6. Del Rio, R. M., andCaballero, A. L. 1980. Presence of γ-aminobutyric acid in rat ovary. J. Neurochem. 34:1584–1586.

    PubMed  Google Scholar 

  7. Erdö, S. L., Rosdy, B., andSzporny., L. 1982. Higher GABA concentrations in fallopian tube than in brain of the rat. J. Neurochem. 38:1174–1176.

    PubMed  Google Scholar 

  8. Kelly, J. S., andDick, F. 1975. Differential labeling, of glial cells and GABA-inhibitory interneurons and nerve terminals following the microinjection of [3H]β-alanine, [3H]DABA and [3H]GABA into single folia of the cerebellum. Cold Spring Harbor Symp. Quant. Biol. 9:93–106.

    Google Scholar 

  9. Erdö, S. L. 1983. High-affinity, sodium-dependent γ-aminobutyric acid uptake by slices of rat ovary. J. Neurochem. 40:582–584.

    PubMed  Google Scholar 

  10. Enns, L., andMcCoy, E. E. 1980. A study of γ-aminobutyric acid uptake in normal and Down's syndrome platelets. Br. J. Pharmacol. 71:553–556.

    PubMed  Google Scholar 

  11. Lawrence, I. E. Jr., andBurden, H. W. 1973. Catecholamines and morphogenesis of the chick neural tube and notochord. Am. J. Anat. 137:199–208.

    PubMed  Google Scholar 

  12. Wallace, J. A. 1982. Monoamines in the early chick embryo: Demonstration of serotonin synthesis and the regional distribution of serotonin.-concentrating cells during morphogenesis. Am. J. Anat. 165:261–276.

    Article  PubMed  Google Scholar 

  13. Gustafson, T., andToneby, M. 1970. On the role of serotonin and acetylcholine in sea urchin morphogenesis. Exp. Cell Res. 62:102–117.

    Article  PubMed  Google Scholar 

  14. Buznikov, G. A., andShmukler, Y. B. 1981. Possible role of “prenervous” neurotransmitters in cellular interactions of early embryogenesis: A hypothesis. Neurochem. Res. 6:55–68.

    Article  PubMed  Google Scholar 

  15. Toneby, M. 1977. Functional aspects of 5-hydroxytryptamine and dopamine in early embryogenesis of Echinodea and Astersidea. University of Stockholm, Stockholm Sweden.

    Google Scholar 

  16. Palén, K., Thorneby, L., andEmanuelsson, H. 1979. Effects of serotonin and serotonin antagonists on chick embryogenesis. Wilhelm Roux' Archives 187:89–103.

    Article  Google Scholar 

  17. Zimmerman, E. F., andWee, E. L. 1984. Role of neurotransmitters in palate development. Pages 37–63.in Zimmerman, E. F. (vol. ed.), Palate Development: Normal and Abnormal Cellular and Molecular Aspects. Current Topics in Developmental Biology. Vol. 19. Academic Press, New York.

    Google Scholar 

  18. Wee, E. L., Babiarz, B. S., Zimmerman, S., andZimmerman, E. F. 1979. Palate morphogenesis: IV. Effects of serotonin and its antagonists on rotation in embryo culture. J. Embryol. Exp. Morph. 53:75–90.

    PubMed  Google Scholar 

  19. Wee, E. L., Phillips, N. J., Babiarz, B. S., andZimmerman, E. F. 1980. Palate morphogenesis: V. Effects of cholinergic agonists, and antagonists on rotation in embryo culture. J. Embryol. Exp. Morph. 58:177–193.

    PubMed  Google Scholar 

  20. Snyder, S. H. 1984. Drug and neurotransmitters in the brain. Science 224:22–31.

    PubMed  Google Scholar 

  21. Miller, R. P., andBecker, B. A. 1975. Teratogenicity of oral diazepam and diphenylhydantoin in mice. Toxicol. Appl. Pharmacol. 32:53–61.

    Article  PubMed  Google Scholar 

  22. Norman, E. J., Wee, E. L., Berry, H. K. andZimmerman, E. F. 1985. Rapid gas chromatography mass spectrometry quantitation of gamma-aminobutyric acid in biological specimens. J. Chromatog. 337:21–27.

    Google Scholar 

  23. Wee, E. L., Kujawa, M., andZimmerman, E. F. 1981. Palate morphogenesis: VI. Identification of stellate cells in culture. Cell. Tissue Res. 217:143–154.

    Article  PubMed  Google Scholar 

  24. Bradford, M. M. 1976. A rapid and sensitive method for the quantiation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  Google Scholar 

  25. Farb, D. H., Berg, D. K., andFishbach, G. D. 1979. Uptake and release of [3H]γ-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture. J. Cell Biol. 80:651–661.

    Article  PubMed  Google Scholar 

  26. Iversen, L. L., andJohnston, G. A. R. 1971. GABA uptake in rat central nervous system: Comparison of uptake in slices and homogenates and the effects of some inhibitors. J. Neurochem. 18:1939–1950.

    PubMed  Google Scholar 

  27. Iversen, L. L., andNeal, M. J. 1968. The uptake of [3H]GABA by slices of rat cerebral cortex. J. Neurochem. 15:1141–1149.

    PubMed  Google Scholar 

  28. Yu, A. C. H., andHertz, L. 1982. Uptake of glutamate, GABA, and glutamine into a predominately GABA-ergic and a predominantly glutaminergic nerve cell population in culture. J. Neurosci. Res. 7:23–35.

    Article  PubMed  Google Scholar 

  29. Taniguchi, H., Okada, Y., Hosaya, Y., andBaba, S. 1980. Comparison of uptake of γ-aminobutyric acid by pancreatic islets and by substantia nigra. Biomed. Res. (Suppl.) 1:175–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wee, E.L., Zimmerman, E.F. GABA uptake in embryonic palate mesenchymal cells of two mouse strains. Neurochem Res 10, 1673–1688 (1985). https://doi.org/10.1007/BF00988609

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988609

Keywords

Navigation