Plant Systematics and Evolution

, Volume 206, Issue 1–4, pp 353–373 | Cite as

Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America

  • Douglas E. Soltis
  • Matthew A. Gitzendanner
  • Darren D. Strenge
  • Pamela S. Soltis
Article

Abstract

Molecular studies of plants from the Pacific Northwest of North America suggest a recurrent pattern of genetic differentiation and geographic structuring. In each of five angiosperms and one fern species representing diverse life histories, cpDNA data indicate two clades of populations that are geographically structured. A northern group comprises populations from Alaska to central or southern Oregon, whereas populations from central Oregon southward to northern California form a southern group. In several of these species, a few populations having southern genotypes may have survived in glacial refugia further north in the Olympic Peninsula, Queen Charlotte Islands, and Prince of Wales Island. Allozyme data reveal a similar pattern of differentiation in several other plants from the Pacific Northwest. North-south partitioning of genotypes has also been reported for several animal species from this region. On a broader geographic scale, northsouth partitioning of genotypes has also been observed in other plants from western North America having a variety of geographic distributions. Some species also display a reduction of genetic variability in the northern portion of their range compared to the south. The data suggest strongly that past glaciation profoundly influenced the genetic architecture of the flora and fauna of the Pacific Northwest. Two alternative hypotheses are advanced to explain the geographic structuring of genotypes. First, past glaciation may have created discontinuities in the geographic distributions of plant species, with populations surviving in several well-isolated northern and southern refugia. Following glaciation, migration of genetically differentiated, once-isolated populations resulted in the formation of a continuous geographic distribution with a major genetic discontinuity. Alternatively, plants survived and subsequently migrated northward from a southern refugium, and a genotype became fixed in one or a few populations at the leading edge of recolonization. Subsequent long-distance dispersal from this leading edge resulted in a relatively uniform northern genotype that differs from the southern genotype(s). Whatever the underlying mechanism, Pleistocence glaciation may have molded the intraspecific genetic architecture of both plants and animals from the Pacific Northwest in a geographically similar manner. Future studies should seek to obtain a comprehensive phylogeography for regions that includes a diversity of both plants and animals.

Key words

Intraspecific phylogeography biogeography cpDNA glacial refugia genetic structuring plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G. A., Antos, J. A., Worley, A. C., Suttill, T. A., Hebda, R. J., 1996: Morphological and genetic variation in disjunct populations of the avalanche lilyErythronium montanum. — Canad. J. Bot.74: 403–412.Google Scholar
  2. Avise, J. C., 1986: Mitochondrial DNA and the evolutionary genetics of higher animals. — Philos. Trans. Ser. B312: 325–342.Google Scholar
  3. —, 1989: Gene trees and organismal histories: a phylogenetic approach to population biology. — Evolution43: 1192–1208.Google Scholar
  4. —, 1994: Molecular markers, natural history, and evolution. — New York: Chapman & Hall.Google Scholar
  5. —, 1989: Molecular genetic relationships of the extinct dusky seaside sparrow. — Science234: 646–648.Google Scholar
  6. —, 1979: Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher,Geomys pinetis. — Proc. Natl. Acad. Sci. USA76: 6694–6698.PubMedGoogle Scholar
  7. —, 1984: Characterization of mitochondrial DNA variability in a hybrid swarm between subspecies of bluegill sunfish (Lepomis macrochirus). — Evolution38: 931–941.Google Scholar
  8. —, 1986: Mitochondrial DNA differentiation in North America eel: population genetic consequences of an unusual life history pattern. — Proc. Natl. Acad. Sci. USA83: 4350–4354.Google Scholar
  9. —, 1987: Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. — Annual. Rev. Ecol. Syst.18: 489–522.Google Scholar
  10. Brown, J. M., Leebens-Mack, J. H., Thompson, J. N., Pellymr, O., Harrison, R. G., 1997: Phylogeography and host association in a pollinating seed parasite,Greyia politella (Lepidoptera: Prodoxidae). — Molec. Ecol. (in press).Google Scholar
  11. Brown, J. R., Beckenbach, A. T., Smith, M. J., 1992: Influence of Pleistocene glaciations and human intervention upon mitochondrial DNA diversity in White Sturgeon (Acipenser transmontanus) populations. — Canad. J. Fish. Aquatic Sci.49: 358–367.Google Scholar
  12. Calder, J. A., Taylor, R. L., 1968: Flora of the Queen Charlotte Islands. Part 1. Systematics of the vascular plants. — Ottawa: Queen's Printer.Google Scholar
  13. Critchfield, W. B., 1984: Impact of the Pleistocene on the genetic structure of North American conifers. — InLanner, R. M., (Ed.): Impact of the Pleistocene on the genetic structure of North American conifers, pp. 70–118. — Logan, UT: Utah State University.Google Scholar
  14. Cwynar, L. C., MacDonald, G. M., 1987: Geographical variation of lodgepole pine in relation to population history. — Amer. Naturalist129: 463–469.Google Scholar
  15. Daubenmire, R., 1975: Floristic plant geography of eastern Washington and northern Idaho. — J. Biogeogr.2: 1–8.Google Scholar
  16. Demesure, B., Comps, B., Petit, R. J., 1996: Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. — Evolution50: 2515–2520.Google Scholar
  17. Detling, L. E., 1958: Pecularities of the Columbia River Gorge flora. — Madroño14: 160–172.Google Scholar
  18. Doyle, J. J., Doyle, J. L., Brown, A. H. D., 1990: Chloroplast DNA polymorphism and phylogeny in the B genome ofGlycine subgenusGlycine (Leguminosae). — Amer. J. Bot.77: 772–782.Google Scholar
  19. Elliot-Fisk, D. L., 1988: The boeral forest. — InBarbour, M. G., Billings, W. D., (Eds): North American terrestrial vegetation, pp. 33–62. — New York: Cambridge University Press.Google Scholar
  20. Ferris, C., Oliver, R. P., Davy, A. J., Hewitt, G. M., 1993: Native oak chloroplasts reveal an ancient divide across Europe. — Molec. Ecol.2: 337–344.Google Scholar
  21. Foster, N. J., 1965: The evolution of the mammals of the Queen Charlotte Islands, British Columbia. — Occas. Pap. British Columbia Prov. Mus. no. 14.Google Scholar
  22. Furnier, G. R., Adams, W. T., 1986: Geographic patterns of allozyme variation in Jeffrey pine. — Amer. J. Bot.73: 1009–1015.Google Scholar
  23. Green, D. M., Sharbel, T. F., Kearsley, J., Kaiser, H., 1996: Postglacial range fluctuation, genetic subdivision and speciation in the western North American spotted frog complex,Rana pretiosa. — Evolution50: 374–390.Google Scholar
  24. Harris, A. S., 1965: Subalpine fir on Harris Ridge near Hollis, Prince of Wales Island, Alaska. — NorthW. Sci.39: 123–128.Google Scholar
  25. Heusser, C. J., 1960: Late-Pleistocene environments of North Pacific North America. — Amer. Geogr. Soc. Misc. Publ.35.Google Scholar
  26. —, 1989: North Pacific coastal regugia — the Queen Charlotte Island in perspective. — InScudder, G. G. E., Gessler, N., (Eds): The outer shores, pp. 91–106. — Queen Charlotte Islands, B. C.; Queen Charlotte Island Museum Press.Google Scholar
  27. Hewitt, G. M., 1993: Postglacial distribution and species substructures: lessons from pollen, insects and hybrid zones. — InLees, D. R., Edwards, D., (Eds): Evolutionary patterns and processes, pp. 97–123. — London: Academic Press.Google Scholar
  28. Hosaka, K., Hanneman, R. E. Jr., 1988: Origin of chloroplast DNA diversity in the Andean potatoes. — Theor. Appl. Genet.76: 333–340.Google Scholar
  29. Hultén, E., 1968: Flora of Alaska and neighboring territories. — Stanford, CA: Stanford University Press.Google Scholar
  30. Johnson, P. J., 1987: Larval taxonomy, biology, and biogeography of the genera of the North AmericanByrrhidae (Insecta:Coleoptera). — M. Sc. Thesis, Department of Plant, Soils, and Entomological Science, University of Idaho, Moscow, USA.Google Scholar
  31. Konnert, M., Bergmann, F., 1995: The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. — Pl. Syst. Evol.196: 19–30.Google Scholar
  32. Lavin, M., Mathews, S., Hughes, C., 1992: Chloroplast DNA variation inGliricidia sepium (Leguminosae): intraspecific phylogeny and tokogeny. — Amer. J. Bot.78: 1576–1585.Google Scholar
  33. Lewis, P. O., Crawford, D. J., 1995: Pleistocene refugium endemics exhibit greater allozymic diversity than widespread congeners in the genusPolygonella (Polygonaceae). — Amer. J. Bot.82: 141–149.Google Scholar
  34. Liston, A., Rieseberg, L. H., Hanson, M. A., 1992: Geographic partitioning of chloroplast DNA variation in the genusDatisca (Datiscaceae). — Pl. Syst. Evol.181: 121–132.Google Scholar
  35. Lorain, C. C., 1988: Floristic history and distribution of coastal disjunt plants of the northern Rocky mountains. — M. Sc. Thesis, College of Forestry, Wildlife and Range Science, University of Idaho, Moscow, USA.Google Scholar
  36. Mercure, A., Ralls, K., Koepfli, K. P., Wayne, R. K., 1993: Genetic subdivision among small canids: mitochondrial DNA differentiation of swift, kit, and arctic foxes. — Evolution47: 1313–1328.Google Scholar
  37. Mitton, J. B., 1994: Molecular approaches to poulation biology. — Annual Rev. Ecol. Syst.25: 45–69.Google Scholar
  38. Moody, M. E., Mueller, L. D., Soltis, D. E., 1993: Genetic variation and random drift in autotetraploid populations. — Genetics134: 649–657.PubMedGoogle Scholar
  39. Muller, F. B., 1977: Fluctuations of glaciers, 1970–1975 (v.3). — Paris: International Commission on Snow and Ice of the International Association of Hydrological Sciences.Google Scholar
  40. Novak, S. J., Soltis, P. S., 1991: Intraspecific cpDNA variation in four species ofLomatium (Umbelliferae). — Amer. J. Bot.78 (Suppl.): 207.Google Scholar
  41. O'Reilly, P., Reimchen, T. E., Beech, R., Strobeck, C., 1993: Mitochondrial DNA inGasterosteus and Pleistocene glacial refugium on the Queen Charlotte Islands, British Columbia. — Evolution47: 678–684.Google Scholar
  42. Parks, C. R., Wendel, J. F., Sewell, M. M., Qiu, Y.-L., 1994: The significance of allozyme variation and introgression in theLiriodendron tulipifera complex (Magnoliaceae). — Amer. J. Bot.81: 878–889.Google Scholar
  43. Pielou, E. C., 1991: After the ice age: the return of life to glacinated North America. — Chicago: The University of Chicago Press.Google Scholar
  44. Pojar, J., 1980: Brooks Peninsula: possible Pleistocene glacial refugium on northwestern Vancouver Island. — Botany 80 Conference. — Bot. Soc. Amer. Misc. Ser. Publ.158: 89.Google Scholar
  45. Rieseberg, L. H., Soltis, D. E., 1987: Allozymic differentiation betweenTolmiea menziesii andTellima grandiflora (Saxifragaceae). — Syst. Bot.42: 227–238.Google Scholar
  46. Sage, R. D., Wolff, J. O., 1986: Pleistocene glaciations, fluctuating ranges, and low genetic variability in a large mammla (Ovis dalli). — Evolution40: 1092–1095.Google Scholar
  47. Sewell, M. M., Parks, C. R., Chase, M. W., 1996: Intraspecific chloroplast DNA variation and biogeography of North AmericanLiriodendron L. (Magnoliaceae). — Evolution50: 1147–1154.Google Scholar
  48. Smith, J. P., Sawyer, J. O., Jr., 1988: Endemic vascular plants of northwestern California and southwestern Oregon. — Madroño35: 54–69.Google Scholar
  49. Soltis, D. E., Kuzoff, R., 1995: Discordance between nuclear and chloroplast phylogenies in theHeuchera group (Saxifragaceae). — Evolution49: 727–742.Google Scholar
  50. —, 1989: Genetic consequences of autopolyploidy inTolmiea menziesii (Saxifragaceae). — Evolution43: 586–594.Google Scholar
  51. —, 1989: Chloroplast DNA variation in a wild plant,Tolmiea menziesii. — Genetics121: 819–826.Google Scholar
  52. —, 1991: Chloroplast DNA variation inTellima grandiflora (Saxifragaceae). — Amer. J. Bot.78: 1379–1390.Google Scholar
  53. —, 1992a: Intraspecific cpDNA variation: systematic and phylogenetic implications. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds): Molecular systematics of plants, pp. 117–150. — New York: Chapman & Hall.Google Scholar
  54. —, 1992b: Geographic structuring of chloroplast DNA genotypes inTiarella trifoliata (Saxifragaceae). — Pl. Syst. Evol.181: 203–216.Google Scholar
  55. Soltis, P. S., Soltis, D. E., 1987: Population structure and estimates of gene flow in the homosporous fernPolystichum munitum. — Evolution41: 620–629.Google Scholar
  56. Soule, J. A., Soltis, D. E., Soltis, P. S., 1995: Geographic patterns of chloroplast DNA variation inRibes bracteosum (Grossulariaceae). — Amer. J. Bot.82: 164.Google Scholar
  57. Steele, R. W., 1971: Red Alder habitats in Clearway County, Idaho. — M. Sc. Thesis, College of Forestry, Wildlife and Range Science, University of Idaho, Moscow, USA.Google Scholar
  58. Steinhoff, R. J., Joyce, D. G., Fins, L., 1983: Isozyme variation inPinus monticola. — Canad. J. Forest. Res.13: 1122–1132.Google Scholar
  59. Strenge, D., 1994: The intraspecific phylogeography ofPolystichum munitum andAlnus rubra. — M. Sc. Thesis, Washington State University.Google Scholar
  60. Thorgaard, G. H., 1983: Chromosomal differences among rainbow trout populations. — Copeia3: 650–662.Google Scholar
  61. Waitt, R. B., Thorson, R. M., 1983: The Cordilleran ice sheet in Washington, Idaho and Montana. — InWright, H. E. Jr., (Ed.): Late-Quaterly environments of the United States1, pp. 53–70. — Minneapolis: University of Minnesota Press.Google Scholar
  62. Warner, N. G., Mathewes, R. W., Clague, J. J., 1982: Ice-free conditions on the Queen Charlotte Islands, British Columbia, at the height of the late Wisconsin glaciation. — Science218: 675–677.Google Scholar
  63. Wells, T. C., Bohm, B. A., 1994: Isozyme variation in North AmericanMenziesia (Ericaceae). — Syst. Bot.19: 407–423.Google Scholar
  64. Wheeler, N. C., Guries, R. P., 1982: Populations structure, genic diversity, and morphological variation inPinus contorta Dougl. — Canad. J. Forest Res.12: 595–606.Google Scholar
  65. Whittaker, R. H., 1961: Vegetation history of the Pacific Coast states and the “central” significance of the Klamath region. — Madroño16: 5–17.Google Scholar
  66. Worley, I. A., Jacques, D., 1973: Subalpine fir (Abies lasiocarpa) in coastal western North America. — NorthW. Sci.47: 265–273.Google Scholar
  67. Zink, R. M., Dittmann, D. L., 1993: Gene flow, refugia, and evolution of geographic variation in the song sparrow (Melospiza melodia). — Evolution47: 717–729.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Douglas E. Soltis
    • 1
  • Matthew A. Gitzendanner
    • 1
  • Darren D. Strenge
    • 1
  • Pamela S. Soltis
    • 1
  1. 1.Department of BotanyWashington State UniversityPullman, WashingtonUSA

Personalised recommendations