Skip to main content
Log in

Changes in chemical composition of a decomposing aquatic macrophyte,Lemna paucicostata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

To understand the changes in chemical composition which may occur as an individual aquatic macrophyte decays, a species of tropical duckweed (Lemna paucicostata) was decomposed (aerobically and anaerobically) by its associated microbial population. Under anaerobic conditions, decomposition of the plant and microbial growth were very rapid. Shortchain carboxylic acids (C2-C5) and ammonia were generated in considerable amounts (reaching a maximum of ca. 30% by weight of original dry weight ofLemna after 71 days). In contrast, free sugars decreased, and amino compounds initially increased slightly and then decreased to the original levels. There were no physical or chemical indications of decomposition occurring under aerobic conditions. The likely biochemical pathways involved in anaerobic decomposition are discussed, and the results are compared with other anaerobic systems such as the rumen, sludge digestion, and aquatic sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansbaek, J., andBlackburn, T.H. 1980. A method for the analysis of acetate turnover in a coastal marine sediment.Microb. Ecol. 5:253–264.

    Google Scholar 

  • Baldwin, R.L., Koong, L.J., AndUlyatt, M.J. 1977. The Formation and utilization of fermentation end-products: Mathematical models, pp. 347–391,in R.T.J. Clarke and T. Bauchop (eds.).Microbial Ecology of the Gut. Academic Press, London.

    Google Scholar 

  • Barcelona, M.J. 1980. Dissolved organic carbon and volatile fatty acids in marine sediment pore waters.Geochim. Cosmochim. Acta 44:1977–1984.

    Google Scholar 

  • Bastardo, H. 1979. Laboratory studies on decomposition of littoral plants.Pol. Arch. Hydrobiol. 26:267–299.

    Google Scholar 

  • Calow, P. 1973. Field observations and laboratory experiments on the general food requirements of two species of freshwater snail,Planorbis contenus (Linn) andAncylusfluviatilis (Müll).Proc. Malacol Soc. London 40:483–489.

    Google Scholar 

  • Calow, P. 1974. Evidence for bacterial feeding inPlanorbis contortus (Linn) (Gastropoda: Pulmonata).Proc. Malacol. Soc. London 41:145–156.

    Google Scholar 

  • Cappenberg, T.E., Jongejan, E., andKaper, J. 1978. Anaerobic breakdown processes of organic matter in freshwater sediments, pp. 91–99, inProceedings of the International Microbial Ecology Symposium J.A.R. Miles and M.W. Loutit (eds.). Springer Verlag, Berlin.

    Google Scholar 

  • Chang, S.-M., Yang, C.-C., andSung, S.-S. 1978. The effects of plant hormones on the cultivation and chemical composition ofLemnaceae.Bull. Inst. Chem., Acad. Sinica 25:19–34.

    Google Scholar 

  • Durst, H.D., Milano, M., Kikta, E.J., Connelly, S.A., andGrushka, E. 1975. Phenacyl esters of fatty acids via crown ether catalysts for enhanced untraviolet detection in liquid chromatography.Anal. Chem. 47:1791–1801.

    Google Scholar 

  • Elsden, S.R., andHilton, M.G. 1978. Volatile acid production from threonine, valine, leucine and isoleucine byClosiridia.Arch. Microbiol. 117:165–172.

    Google Scholar 

  • Fenchel, T. M., andJørgensen, B.B. 1977. Detritus food chains of aquatic ecosystems: The role of bacteria.Adv. Microb. Ecol. 1:1–58.

    Google Scholar 

  • Fevrier, A., Barbier, M., andSaliot, A. 1976. Molecules organiques dissoutes dans l'eau de mer: Utilisation de l'acide palimitique, de l'alcool cetylique et du dotriacontane par les invertebres marins.J. Exp. Mar. Biol. Ecol. 25:123–129.

    Google Scholar 

  • Gauch, R., Leuenberger, U., andBaumoartner, E. 1979. Quantitative determination of mono-, di- and trisaccharides by thin layer chromatography.J. Chromatogr. 174:195–200.

    Google Scholar 

  • Gocke, K. 1971. Untersuchungen über Abgabe und Aufnahme von Aminosäuren und Polypeptiden durch Planktonorganismen.Arch. Hydrobiol. 67:285–367.

    Google Scholar 

  • Hartree, E.F. 1972. Determination of protein: a modification of the Lowry method that gives a linear photometric response.Anal. Biochem. 48:422–427.

    Google Scholar 

  • Jabbar Muztar, A., Slinger, S.J., andBurton, J.H. 1978a. Chemical composition of aquatic macrophytes I. Investigation of organic constituents and nutritional potential.Can. J. Plant Sci. 58:829–841.

    Google Scholar 

  • Jabbar Muztar, A., Slinger, S.J., andBurton, J.H. 1978b. II. Amino acid composition of the protein and non-protein fractions.Can. J. Plant Sci. 58:843–849.

    Google Scholar 

  • Jabbar Muztar, A., Slinger, S.J., andBurton, J.H. 1978c, III. Mineral composition of freshwater macrophytes and their potential for mineral nutrient removal from lake water.Can. J. Plant Sci. 58:851–862.

    Google Scholar 

  • Jabbar Muztar, A., Slinger, S.J., andBurton, J.H. 1979. IV. Carotenoids, soluble sugars and starch in relation to their pigmenting and ensiling potential.Can. J. Plant Sei. 59:1093–1098.

    Google Scholar 

  • Jackson, P.C., andSt. John, J.B. 1980. Changes in membrane lipids of roots associated with changes in permeability.Plant Physiol. 66:801–804.

    Google Scholar 

  • Jeris, J.S., andMcCarty, P.L. 1965. The biochemistry of methane fermentation using C14 tracers.J. Water Pollut. Control Fed. 37:178–192.

    Google Scholar 

  • Joergensen, M.H. 1978. Anaerobic formation of volatile acids in a chemostat.Eur. J. Appl. Microbiol. Biotechnol. 6:181–187.

    Google Scholar 

  • Lacey, J. 1979. Aerial dispersion and the development of microbial communities, pp. 140–170,in J.M. Lynch andN.J. Poole (eds.). Microbial Ecology: A Conceptual Approach. Blackwell, Oxford.

    Google Scholar 

  • Lammens, E.H.R.R., andVan Der Velde, G. 1978. Observations on the decomposition ofNymphoides peltata (G. mel.) O. Kuntze (Menyanthaceae) with special regard to the leaves.Aquat. Bot. 4:331–346.

    Google Scholar 

  • Lynch, J. M., andPoole, N.J. 1979. Microbiol Ecology: A Conceptual approach. Blackwell, Oxford.

    Google Scholar 

  • Maser, M.D., andTrimble, J.J., III. 1977. Rapid chemical dehydration of biological samples for scanning electron microscopy using 2,2-dimethoxypropane.J. Histochem. Cytochem. 25:247–251.

    Google Scholar 

  • Mason, C.F. 1974. Mollusca, pp. 555–591,in C.H. Dickinson and G.J.F. Pugh (eds.). Biology of Plant Litter Decomposition. Academic Press, London.

    Google Scholar 

  • Miller, D., Brown, C.M., Pearson, T.H., andStanley, S.O. 1979. Some biologically important low molecular weight organic acids in the sediment of Loch Eil.Mar. Biol. 50:375–383.

    Google Scholar 

  • Newell, R.C., Lucas, M.I., andLinley, E.A.S. 1981. Rate of degradation and efficiency of conversion of phytoplankton debris by marine microorganisms.Mar. Ecol. Prog. Ser. 6:123–136.

    Google Scholar 

  • Patience, R.L., andThomas, J.D. 1982. Rapid concentration and analysis of short chain carboxylic acids: Variation on a theme.J. Chromatogr. 234:225–230.

    Google Scholar 

  • Pimentel, D., andWhite, P.C. 1959. Biological environment and habits ofAustralorbis glabratus.Ecology 40:541–550.

    Google Scholar 

  • Pomeroy, L.R. 1980a. Detritus and its role as a food source, pp. 84–102,in R.K. Barnes and K.H. Mann (eds.). Fundamentals of Aquatic Ecosystems. Blackwell, Oxford.

    Google Scholar 

  • Pomeroy, L.R. 1980b. Microbial roles in aquatic food webs, pp. 85–109,in R.R. ColwellandJ. Foster (eds.). Aquatic Microbial Ecology (Proceedings of a Conference). University of Maryland Sea Grant Program, College Park, Maryland.

    Google Scholar 

  • Poston, J.M. 1976. Leucine 2,3-aminomutase, an enzyme of leucine catabolism.J. Biol. Chem. 251:1859–1863.

    Google Scholar 

  • Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acids.Arch. Biochem. Biophys. 67:10–15.

    Google Scholar 

  • Runquist, E.A., Abbott, E.H., Armold, M.T., andRobbins, J.E. 1981. Application of13C- nuclear magnetic resonance to the observation of metabolic interactions in anaerobic digestors.Appl. Environ. Microbiol. 42:556–559.

    Google Scholar 

  • Russell, J.B., andHespell, R.B. 1981. Microbial rumen fermentation.J. Dairy Sei, 64:1153–1169.

    Google Scholar 

  • Sansone, F.J., andMartens, C.S. 1981. Determination of volatile fatty acid turnover rates in organic-rich marine sediments.Mar. Chem. 10:233–247.

    Google Scholar 

  • Sieburth, J.McN. 1975. Microbial Seascapes. University Park Press, Baltimore.

    Google Scholar 

  • Skopintsev, B.A., Bikbulatov, E.S., Bikulatov, E.M., andMelnikova, N.I. 1979a. Change in the chemical composition of water and suspensions during decomposition of organic matter of phytoplankton under aerobic conditions.Tr. Inst. Biol. Vnutr. Vod. Akad. Nauk SSSR. 37:159–186.

    Google Scholar 

  • Skopintsev, B.A., Bikbulatov, E.S., Bikbulatov, E.M., andMelnikova, N.I. 1979b. Change in the chemical composition of water and suspensions during decomposition of organic matter of phytoplankton under anaerobic conditions.Tr. Inst. Biol. Vnutr. Vod. Akad. Nauk SSSR 37:187–203.

    Google Scholar 

  • Smock, L.A., andStoneburner, D.L. 1980. The response of macroinvertebrates to aquatic macrophyte decomposition.Oikos 35:397–403.

    Google Scholar 

  • Sørensen, J., Christensen, D., andJørgensen, B.B. 1981. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment.Appl. Environ. Microbiol. 42:5–11.

    Google Scholar 

  • Southward, A.J., andSouthward, E.C.. 1970. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Experiments on three species ofPoponophora. Sarsia 45:69–96.

    Google Scholar 

  • Spoelstra, S.F. 1979. Volatile fatty acids in anaerobically stored piggery wastes.Neth. J. Agric. Sci. 27:60–66.

    Google Scholar 

  • Standard Methods For The Examination Of Water And Wastewater. 1981. (15th ed.), pp. 360–361. American Public Health Association, American Water Works Association, Water Pollution Control Federation.

  • Tempest, D.W., andNeijssel, O.M. 1981. Metabolic compromises involved in the growth of micro-organisms in nutrientlimited (chemostat) environments, pp. 335–336,in A. Hollaender and R. Rabson (eds.). Basic Life Sciences. 18 (Trends in Biological Fermentation and Fuels Chemistry) Plenum Press, New York.

    Google Scholar 

  • Testerman, J.K. 1972. Accumulation of free fatty acids from sea water by marine invertebrates.Biol. Bull. 142:160–177.

    Google Scholar 

  • Thomas, J.D., Lough, A.S., andLodge, R.W. 1975. The chemical ecology ofBiomphalaria glabrata (Say), the snail host ofSchistosoma mansoni Sambon: The search for factors in media conditioned by snails which inhibit their growth and reproduction.J. Appl. Ecol. 12:421–436.

    Google Scholar 

  • Thomas, J.D., Cowley, C., andOfosu-Barko, J. 1980. Behavioural responses to amino and carboxylic acids byBiomphalaria glabrata, one of the snail hosts ofSchistosoma mansoni, pp. 433–448,in R.A. Baker (ed.). Sixth International Symposium on Controlled Release of Bioactive Materials. Academic Press, New York.

    Google Scholar 

  • Toerien, D.F., andHattingh, W.H.J. 1969. Anaerobic digestion. I. The microbiology of anaerobic digestion.Water Res. 3:385–416.

    Google Scholar 

  • Uribelarrea, J.L., andPareilleux, A. 1981. Anaerobic digestion: microbial and biochemical aspects of volatile acid production.Eur. J. Appl. Microbiol. Biotechnol. 12:118–122.

    Google Scholar 

  • Whatley, M.H., andSequeira, L. 1981. Bacterial attachment to plant cell walls.Recent Adv. Phytochem. 155:213–240.

    Google Scholar 

  • Willoughby, L.G. 1974. Decomposition of litter in freshwater, pp. 659–681,in C.H. Dickinson and G.J.F. Pugh (eds.). Biology of Plant Litter Decomposition. Academic Press, London.

    Google Scholar 

  • Willoughby, L.G. 1976. Freshwater Ecology. Hutchinson, London.

    Google Scholar 

  • Zilic, Z., Blau, N., andKnob, M. 1979. Simple rapid method for the separation and quantitative analysis of carbohydrates in biological fluids.J. Chromatogr. 164:91–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part I of the Chemical Ecology of Freshwater Snail-Plant-Detritus Interrelationships.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patience, R.L., Sterry, P.R. & Thomas, J.D. Changes in chemical composition of a decomposing aquatic macrophyte,Lemna paucicostata . J Chem Ecol 9, 889–911 (1983). https://doi.org/10.1007/BF00987813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987813

Key words

Navigation