Skip to main content
Log in

Termination of protein synthesis

  • Special Issue: Protein Synthesis
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

One of three mRNA codons — UAA, UAG and UGA — is used to signal to the elongating ribosome that translation should be terminated at this point. Upon the arrival of the stop codon at the ribosomal acceptor(A)-site, a protein release factor (RF) binds to the ribosome resulting in the peptidyl transferase centre of the ribosome switching to a hydrolytic function to remove the completed polypeptide chain from the peptidyl-tRNA bound at the adjacent ribosomal peptidyl(P)-site. In this review recent advances in our understanding of the mechanism of termination in the bacteriumEscherichia coli will be summarised, paying particular attention to the roles of 16S ribosomal RNA and the release factors RF-1, RF-2 and RF-3 in stop codon recognition. Our understanding of the translation termination process in eukaryotes is much more rudimentary with the identity of the single eukaryotic release factor (eRF) still remaining elusive. Finally, several examples of how the termination mechanism can be subverted either to expand the genetic code (e.g. selenocysteine insertion at UGA codons) or to regulate the expression of mammalian retroviral or plant viral genomes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caskey CT (1980) Trends Biochem. Sci. 5: 234–237

    Google Scholar 

  2. Craigen WJ, Lee CC & Caskey CT (1990) Mol. Microbiol. 4: 861–865

    PubMed  Google Scholar 

  3. Tate WP & Brown CM (1992) Biochemistry 31: 2443–2450

    PubMed  Google Scholar 

  4. Brown CM, Stockwell PA, Trotman CNA & Tate WP (1990) Nucleic Acids Res. 18: 2079–2085

    PubMed  Google Scholar 

  5. Brown CM, Dalphin ME, Stockwell PA & Tate WP (1993) Nucleic Acids Res. 21: 3119–3123

    PubMed  Google Scholar 

  6. Caskey CT, Scolnick E, Tompkins R, Milman G & Goldstein J (1971) Methods Enzymol. 20: 367–377

    Google Scholar 

  7. Tate WP & Caskey CT (1990) In: Spedding G (Ed) Ribosomes and Protein Synthesis: A Practical Approach (pp 81–100) IRL Press, Oxford

    Google Scholar 

  8. Pederson WT & Curran JF (1991) J. Mol. Biol. 219: 231–241

    PubMed  Google Scholar 

  9. Mottagui-Tabar S, Björnsson A & Isaksson LA (1994) EMBO J. 13: 249–254

    PubMed  Google Scholar 

  10. Smut J, Kemper W, Caskey CT & Nirenberg M (1970) J. Biol. Chem. 245: 2753–2760

    PubMed  Google Scholar 

  11. Dahlberg AE (1989) Cell 57: 525–529

    PubMed  Google Scholar 

  12. Brown CM, McCaughan KK & Tate WP (1993) Nucleic Acids Res. 21: 2109–2115

    PubMed  Google Scholar 

  13. Shine J & Dalgarno L (1974) Proc. Natl. Acad Sci. USA 71: 1342–1346

    PubMed  Google Scholar 

  14. Murgola EJ, Hijiazi KA, Goringer HU & Dahlberg AE (1988) Proc. Natl. Acad. Sci. USA 85: 4162–4165

    PubMed  Google Scholar 

  15. Prescott CD, Krabben L & Nierhaus KH (1991) Nucleic Acids Res. 19: 5281–5283

    PubMed  Google Scholar 

  16. Brimacombe R (1992) Biochimie 74: 319–326

    PubMed  Google Scholar 

  17. Tate WP, Kastner B, Edgar CD, McCaughan KK, Timms KM, Trotman CNA, Stoffler-Meilicke M, Stoffler G, Nag B & Traut RR (1990) Eur. J. Biochem. 187: 543–548

    PubMed  Google Scholar 

  18. Tate WP, McCaughan KK, Kastner B, Trotman CNA, Stoffler-Meilicke M & Stoffler G (1988) Biochem. Intl. 17: 179–186

    Google Scholar 

  19. Noller HF, Hoffarth V & Zimniak L (1992) Science 256: 1416–1419

    PubMed  Google Scholar 

  20. Kastner B, Trotman C & Tate WP (1990) J. Mol. Biol. 212: 241–245

    PubMed  Google Scholar 

  21. Teraoka H & Nierhaus KH (1978) FEBS Letts. 88: 223–226

    Google Scholar 

  22. Craigen WJ, Cook RG, Tate WP & Caskey CT (1985) Proc. Natl. Acad. Sci. USA 82: 3616–3620

    PubMed  Google Scholar 

  23. Craigen WJ & Caskey CT (1986) Nature 322: 273–275

    PubMed  Google Scholar 

  24. Mikuni O, Ito K, Matsumura K, Moffat J, Nobukuni T, McCaughan K, Tate WP & Nakamura Y (1994) Proc. Natl. Acad. Sci. USA, in press

  25. Elliott T (1989) J. Bacteriol. 171: 3948–3960

    PubMed  Google Scholar 

  26. Elliott T & Wang X (1991) J. Bacteriol. 173: 4144–4154

    PubMed  Google Scholar 

  27. Sadaie Y, Takamatsu H, Nakamura K & Yamane K (1991) Gene 98: 101–105

    PubMed  Google Scholar 

  28. Pel HJ, Rep M & Grivell LA (1992) Nucleic Acids Res. 20: 4423–4428

    PubMed  Google Scholar 

  29. Moffat JG, Donly BC, McCaughan KK & Tate WP (1993) Eur. J. Biochem. 231: 749–756

    Google Scholar 

  30. Moffat JG, Timms KM, Trotman CNA & Tate WP (1991) Biochimie 73: 1113–1120

    PubMed  Google Scholar 

  31. Adamski FM, Donly BC & Tate WP (1993) Nucleic Acids Res. 22: 5074–5079

    Google Scholar 

  32. Caskey CT, Scolnick E, Tompkins R, Goldstein J & Milman G (1969) Cold Spring Harbor Symp. Quant. Biol. 34: 479–488

    PubMed  Google Scholar 

  33. Capecchi MR & Klein HA (1969) Cold Spring Harbor Symp. Quant. Biol. 34: 469–477

    PubMed  Google Scholar 

  34. Pel HJ, Maat C, Rep M & Grivell LA (1992) Nucleic Acids Res. 20: 6339–6346

    PubMed  Google Scholar 

  35. Lee CC, Timms KM, Trotman CNA & Tate WP (1987) J. Biol. Chem. 262: 3548–3552

    PubMed  Google Scholar 

  36. Goldstein JL, Beaudet AL & Caskey CT (1970) Proc. Natl. Acad. Sci. USA 67: 99–106

    PubMed  Google Scholar 

  37. Beaudet AL & Caskey CT (1971) Proc. Natl. Acad. Sci. USA 68: 619–624

    PubMed  Google Scholar 

  38. Konecki DS, Aune KC, Tate WP & Caskey CT (1977) J. Biol. Chem. 252: 4514–4520

    PubMed  Google Scholar 

  39. Lee CC, Craigen WJ, Muzny DM, Harlow E & Caskey CT (1990) Proc. Natl. Acad. Sci. USA 87: 3508–3512

    PubMed  Google Scholar 

  40. Frolova LY, Fleckner J, Justesen J, Timms KM, Tate WP, Kisselev LL & Haenni A-L (1993) Eur. J. Biochem. 212: 457–466

    PubMed  Google Scholar 

  41. Frolova LY, Dalphin ME, Justesen J, Powell RJ, Drugeon G, McCaughan KK, Kisselev LL, Tate WP & Haenni A-L (1993) EMBO J. 12: 4013–4019

    PubMed  Google Scholar 

  42. Stansfield I, Grant CM, Akhmaloka & Tuite MF (1992) Mol. Microbiol. 6: 3469–3478

    PubMed  Google Scholar 

  43. Stansfield I & Tuite MF (1994) Curr. Genet. in press

  44. Mikuni O, Kawakami K & Nakamura Y (1991) Biochimie 73: 1509–1516

    PubMed  Google Scholar 

  45. Kawakami K & Nakamura Y (1990) Proc. Natl. Acad. Sci. USA 87: 8432–8436

    PubMed  Google Scholar 

  46. Cox BS (1977) Genet. Res. 30: 187–205

    Google Scholar 

  47. Cox BS, Tuite MF & McLaughlin CS (1988) Yeast 4: 159–178

    PubMed  Google Scholar 

  48. Tuite MF, Cox BS & McLaughlin CS (1987) FEBS Letts. 225: 205–208

    Google Scholar 

  49. Osawa S, Jukes TH, Watanabe K & Muto A (1992) Microbiol. Rev. 56: 229–264

    PubMed  Google Scholar 

  50. Stadman TC (1991) J. Biol. Chem. 266: 16257–16260

    PubMed  Google Scholar 

  51. Zinoni F, Birkmann A, Leinfelder W & Bock A (1987) Proc Natl Acad. Sci. USA 84: 3156–3160

    PubMed  Google Scholar 

  52. Berry MJ, Banu L & Larsen PR (1991) Nature 349: 438–440

    PubMed  Google Scholar 

  53. Bock A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B & Zinoni F (1991) Mol. Microbiol. 5: 515–520

    PubMed  Google Scholar 

  54. Berry MJ, Banu L, Harney JW & Larsen PR (1993) EMBO J. 12: 3315–3322

    PubMed  Google Scholar 

  55. Hatfield D, Smith DWE, Lee BJ, Worland PJ & Oroszlan S (1990) Crit. Rev. Biochem. Mol. Biol. 25: 71–96

    PubMed  Google Scholar 

  56. Pure GA, Robinson GW, Naumovski L & Freidberg EC (1985) J. Mol. Biol. 183: 31–42

    PubMed  Google Scholar 

  57. Weiss WA & Freidberg EC (1986) J. Mol. Biol. 192: 725–735

    PubMed  Google Scholar 

  58. Hatfield DL, Levin JG, Rein A & Oroszlan S (1992) Adv. Virus Res. 41: 193–239

    PubMed  Google Scholar 

  59. Feng Y-X, Copeland TD, Oroszlan S, Rein A & Levin JG (1990) Proc. Natl. Acad. Sci. USA 87: 8860–8863

    PubMed  Google Scholar 

  60. Feng Y-X, Yuan H, Rein A & Levin JG (1992) J. Virol. 66: 5127–5132

    PubMed  Google Scholar 

  61. Wills NM, Gesteland RF & Atkins JF (1991) Proc. Natl. Acad. Sci. USA 88: 6991–6995

    PubMed  Google Scholar 

  62. Zerfas K & Beier H (1992) Nucleic Acids Res. 20: 5911–5918

    PubMed  Google Scholar 

  63. Skuzeski JM, Nichols LM, Gesteland RF & Atkins JF (1991) J. Mol. Biol. 218: 365–373

    PubMed  Google Scholar 

  64. Angenon G, van Montagu M & Depicker A (1990) FEBS Letts. 271: 144–146

    Google Scholar 

  65. Wu E-D, Inokuchi H & Ozeki H (1990) Jpn. J. Genet. 65: 115–119

    PubMed  Google Scholar 

  66. Ryden M, Murphy J, Martin R, Isaksson L & Gallant J (1986) J. Bacteriol. 168: 1066–1069

    PubMed  Google Scholar 

  67. Ryden SM & Isaksson LA (1984) Mol. Gen. Genet. 193: 38–45

    PubMed  Google Scholar 

  68. Kawakami K, Inada T & Nakamura Y (1988) J. Bacteriol. 179: 5378–5381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuite, M.F., Stansfield, I. Termination of protein synthesis. Mol Biol Rep 19, 171–181 (1994). https://doi.org/10.1007/BF00986959

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00986959

Key words

Navigation