Skip to main content
Log in

Cytochemistry of mature angiosperm pollen

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The problems involved in applying histochemical and cytochemical methods to mature angiosperm pollen for bright light and fluorescence microscopy are discussed. These methods can be used for general examination or to reveal particular structures or groups of substances. The main methods of testing pollen viability and germinability based on stains and semiquantitative methods are also reviewed. The main methods of staining and their applications are summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M. P. (1969) Differential staining of aborted and nonaborted pollen. Stain Technol. 44: 117–122.

    Google Scholar 

  • Alexander M. P. (1987) A method for staining pollen tubes in pistil. Stain Technol. 62: 107–112.

    Google Scholar 

  • Ashford A. E., Knox R. B. (1980) Characteristics of pollen diffusates and pollen wall cytochemistry. Cell Sci. 44: 1–17.

    Google Scholar 

  • Baker H. G., Baker I. (1979) Starch in angiosperm pollen grains and its evolutionary significance. Amer. J. Bot. 66: 591–600.

    Google Scholar 

  • Baker J. R. (1947) Further remarks on the histochemical recognition of lipine. Quart. J. Microscop. Sci. 88: 463–465.

    Google Scholar 

  • Barrow J. R. (1983) Comparisons among pollen viability measurement methods in cotton. Crop Sci. 23: 734–736.

    Google Scholar 

  • Bassani M., Pacini E., Franchi G. G. (1994) Humidity stress responses in pollen of anemophilous and entomophilous species. Grana 33: 146–150.

    Google Scholar 

  • Beattie A. J. (1971) Pan Pac. Entomol. 47: 82 (cited by Dafni A. (1992) Pollination ecology. A practical approach. Oxford: IRL Press).

    Google Scholar 

  • Bellani L. M., Pacini E., Franchi G. G. (1985a) In vitro pollen grain germination and starch content in species with different reproductive cycle. I.Lycopersicum peruvianum Mill. Acta Bot. Neerl. 34: 59–64.

    Google Scholar 

  • Bellani L. M., Pacini E., Franchi G. G. (1985b) In vitro pollen grain germination and starch content in species with different reproductive cycle. II.Malus domestica Borkh. cultivars Starkrimson and Golden Delicious. Acta Bot. Neerl. 34: 65–71.

    Google Scholar 

  • Brewbaker J. L., Kwack B. H. (1964) The calcium ion and substances influencing pollen growth. In: Linskens H. F. (ed.) Pollen physiology and fertilization. North-Holland Publishing Company, Amsterdam, pp. 143–151.

    Google Scholar 

  • Cain A. J. (1947) The use of Nile blue in the examination of lipids. Quart. J. Microscop. Sci. 88: 463–465.

    Google Scholar 

  • Chichiriccò G., Grilli Caiola M. (1982) Germination and viability of the pollen ofCrocus sativus L. Giorn. Bot. Ital. 116: 167–173.

    Google Scholar 

  • Coleman A. W., Goff L. J. (1985) Applications of fluorochromes to pollen biology. I. Mithramicin and 4′,6-diamidini-2-phenylindole (DAPI) as vital staining and for quantitation of nuclear DNA. Stain Technol. 60: 145–154.

    Google Scholar 

  • Corriveau J. L., Coleman A. W. (1991) Monitoring by epifluorescence microscopy of organelle DNA fate during pollen development in five angiosperm species. Dev. Biol. 147: 271–280.

    Google Scholar 

  • Cresti M., Pacini E., Ciampolini F., Sarfatti G. (1977) Germination and pollen tube development in vitro ofLycopersicum peruvianum pollen: ultrastructural features. Planta 136: 239–247.

    Google Scholar 

  • Currier H. B., Strugger S. (1956) Aniline blue and fluorescence microscopy of callose in bulb scales ofAllium cepa L. Protoplasma 45: 552–559.

    Google Scholar 

  • Darlington C. D., La Cour L. F. (1960) The handling of chromosomes, 3rd rev. edn. George Allen and Unwin Ltd., London.

    Google Scholar 

  • Deitch A. (1955) Microspectrophotometric study of the binding of the anionic dye naphtol yellow S by tissue sections and purified proteins. Lab. Invest. 4: 324–351.

    Google Scholar 

  • De Nettancourt D. (1977) Incompatibility in Angiosperms. Springer, Berlin.

    Google Scholar 

  • Dobson H. E. M. (1988) Survey of pollen and pollenkitt lipids — chemical cues to flower visitors. Amer. J. Bot. 75: 170–182.

    Google Scholar 

  • Edelman J., Jefford T. G. (1968) The mechanism of fructosan metabolism in higher plants as exemplified inHelianthus tuberosus. New Phytol. 67: 517–531.

    Google Scholar 

  • Eeninck A. H. (1981) Compatibility and incompatibility in witloof-chicory (Cichorium intybus L.). 1. The influence of temperature and plant age on pollen germination and seed production. Euphytica 30: 71–76.

    Google Scholar 

  • Endress P. K. (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge.

    Google Scholar 

  • Erdtman G. (1952) Pollen Morphology and Plant Taxonomy. Angiosperms. Ålmqvist & Wiksell, Stockholm.

    Google Scholar 

  • Erdtman G. (1960) The acetolysis method. Sven. Bot. Tidskr. 54: 561–564.

    Google Scholar 

  • Evans N., Hoyne P. (1982) A fluorochrome from aniline blue: structure, synthesis and fluorescence properties. Aust. J. Chem. 35: 2571–2575.

    Google Scholar 

  • Faegri K., Iversen J. (1964) Textbook for pollen analysis. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Fisher D. (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16: 92–96.

    Google Scholar 

  • Flax M., Himes M. (1952) Microspectrophotometric analysis of metachromatic staining of nucleic acids. Physiol. Zool. 25: 297–311.

    Google Scholar 

  • Franchi G. G., Bellani L., Nepi M., Pacini E. (1996) Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora 191: 143–159.

    Google Scholar 

  • Franchi G. G., Franchi G., Corti P., Pompella A. (1997) Microspectrophotometric evaluation of digestibility of pollen grains. Pl. Foods Hum. Nutr. 50: 115–126.

    Google Scholar 

  • Franchi G. G., Franchi G., Giorni G. (1983) Influenza sul polline dell'inquinamento atmosferico da piombo. Boll. Chim. Farm. 122: 589–597.

    Google Scholar 

  • Franchi G. G., Pacini E. (1980) Wall projections in the vegetative cell ofParietaria officinalis L. pollen. Protoplasma 104: 67–74.

    Google Scholar 

  • Franchi G. G., Pacini E., Rottoli P. (1984) Pollen grain viability inParietaria judaica L. during the long blooming period and correlation with meteorological conditions and allergic diseases. Giorn. Bot. Ital. 118: 163–178.

    Google Scholar 

  • Frankis R., Mascarenas J. P. (1980) Messenger RNA in the ungerminated pollen grain: a direct demonstration of its presence. Ann. Bot. 45: 595–599.

    Google Scholar 

  • Gabe M. (1976) Histological tecniques. Masson, Paris.

    Google Scholar 

  • Gahan P. B. (1984) Plant histochemistry and cytochemistry. Academic Press, London.

    Google Scholar 

  • Goff L. J. A., Coleman A. W. (1984) Elucidation of fertilization and development in a red alga by quantitative DNA microspectrofluorometry. Dev. Biol. 102: 1023–1024.

    Google Scholar 

  • Gurr E. (1965) The rationale use of dies in biology. Leonard Hill, London.

    Google Scholar 

  • Halterlein A. J., Clayberg C. D., Iwan D. T. (1980) Influence of high temperature on pollen grain viability and pollen tube growth in the styles ofPhaseolus vulgaris L. J. Amer. Soc. Hort. Sci. 105: 12–14.

    Google Scholar 

  • Hauser E. J. P., Morrison J. H. (1964) Cytochemical reduction of nitro blue tetrazolium as an index of pollen viability. Amer. J. Bot. 51: 748–753.

    Google Scholar 

  • Hendry G. A. F. (1993) Evolutionary origins and natural functions of fructanes — a climatological, biogeographic and mechanistic appraisal. New Phytol. 123: 3–14.

    Google Scholar 

  • Heslop-Harrison J. (1968) Synchronous pollen mitosis and the formation of the generative cell in massulate orchids. J. Cell Sci. 3: 457–466.

    Google Scholar 

  • Heslop-Harrison J. (1975) The adaptive significance of the exine. In: Ferguson J. K., Muller J. (eds.) The evolutionary significance of the exine. Academic Press, London, pp. 27–38.

    Google Scholar 

  • Heslop-Harrison J. (1979a) Pollen walls as adaptive systems. Ann. Missouri Bot. Gard. 66: 813–829.

    Google Scholar 

  • Heslop-Harrison J. (1979b) Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann. Bot. 44 [Suppl. 1]: 1–47.

    Google Scholar 

  • Heslop-Harrison J. (1979c) An interpretation of the hydrodynamics of pollen. Amer. J. Bot. 66: 737–743.

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 45: 115–120.

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1985) Germination of stress-tolerantEucaliptus pollen. J. Cell Sci. 73: 135–157.

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1991) Structural and functional variation in pollen intine. In: Blackmore S., Barnes S. H. (eds.) Pollen and spores. Patterns of diversification. Clarendon Press, Oxford, pp. 331–343.

    Google Scholar 

  • Heslop-Harrison J., Knox R. B., Heslop-Harrison Y. (1974) Pollen-wall proteins: exine held fractions associated with the incompatibility response in Cruciferae. Theor. Appl. Genet. 44: 133–137.

    Google Scholar 

  • Heslop-Harrison J., Knox R. B., Heslop-Harrison Y., Mattsson O. (1975) Pollen-wall proteins: emission and role in incompatibility responses. In: Duckett J. G., Racey P. A. (eds.) The biology of male gametes. Academic Press, London, pp. 189–202.

    Google Scholar 

  • Heslop-Harrison Y. (1977) The pollen stigma interaction: pollen tube penetration inCrocus. Ann. Bot. 41: 913–922.

    Google Scholar 

  • Heslop-Harrison Y., Heslop-Harrison J. (1982) The microfibrillar component of the pollen intine: some structural features. Ann. Bot. 50: 831–842.

    Google Scholar 

  • Heslop-Harrison Y., Heslop-Harrison J. S., Heslop-Harrison J. (1986) Germination ofCorylus avellana L. (hazel) pollen: Hydration and the function of the oncus. Acta Bot. Neerl. 35: 265–284.

    Google Scholar 

  • Hoekstra F. A., Van Roekel T. (1988) Desiccation tolerance inPapaver dubium L. pollen during its development in the anther. Plant Physiol. 88: 626–632.

    Google Scholar 

  • Hough T., Bernhardt P., Knox R. B., Williams E. G. (1985) Applications of fluorochromes to pollen biology. II. The DNA probes Ethidium Bromide and Hoechst 33258. Stain Technol. 60: 155–162.

    Google Scholar 

  • Jensen W. A. (1962) Botanical histochemistry: principles and practice. WH Freeman and Co, San Francisco.

    Google Scholar 

  • Johansen D. A. (1940) Plant microtechnique. McGraw-Hill, New York.

    Google Scholar 

  • Jones A. G. (1976) Environmental effects on the percentage of stainable and presumed normal pollen inAster (Compositae). Amer. J. Bot. 63: 657–663.

    Google Scholar 

  • Kandler O., Hopf H. (1980) Occurrence, metabolism, and function of oligosaccharides. In: Preiss J. (ed.) The biochemistry of plants: a comprehensive treatise. Vol. 3. Carbohydrates: structure and function. Academic Press, New York, pp. 221–270.

    Google Scholar 

  • Keijzer C. J. (1987) The process of anther dehiscence and pollen dispersal. II. The formation and the transfer mechanism of pollenkitt, cell wall development of the loculus tissues and the function of orbicules in pollen dispersal. New Phytol. 105: 499–507.

    Google Scholar 

  • Knox R. B. (1979) Pollen and allergy. Edward Arnold Limited, London.

    Google Scholar 

  • Kress W. J. (1986) Exineless pollen structure and pollination systems of tropicalHeliconia (Heliconiaceae). In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores. Form and function. Academic Press, London, pp. 329–345.

    Google Scholar 

  • Laloue M., Courtois D., Manigault P. (1980) Convenient and rapid fluorescent staining of cell nuclei with 33258 Hoechst. Plant Sci. Lett. 17: 175–179.

    Google Scholar 

  • Laser K. D., Lersten N. R. (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile Angiosperms. Bot. Rev. 38: 425–454.

    Google Scholar 

  • Le Pecq J. B., Paoletti C. (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. Mol. Biol. 27: 87–106.

    Google Scholar 

  • Linskens H. F., Mulleneers J. M. L. (1967) Formation of “instant pollen tubes”. Acta Bot. Neerl. 16: 132–142.

    Google Scholar 

  • Lisci M., Tanda C., Pacini E. (1994) Pollination ecophysiology ofMercurialis annua L. (Euphorbiaceae), an anemophilous species flowering all year round. Ann. Bot. 74: 125–135.

    Google Scholar 

  • Major H. D., Hampton J. C., Rosario B. (1961) A simple method for removing the resin from epoxy-embedded tissue. J. Cell Biol. 9: 909–910.

    Google Scholar 

  • Martin F. W. (1959) Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol. 34: 125–128.

    Google Scholar 

  • Matthys-Rochon E., Vergne P., Detchpare S., Dumas C. (1987) Male Germ Unit isolation from three tricellular pollen species:Brassica oleracea, Zea mays, andTriticum aestivum. Plant Physiol. 83: 464–466.

    Google Scholar 

  • Mazia D., Brewer P., Alfert M. (1953) The cytochemical staining and measurament of protein with mercuric bromophenol blue. Biol. Bull. 104: 527–540.

    Google Scholar 

  • Meuter-Gerhards A., Schwerdtfeger C., Steuernagel S., Wilmesmeier S., Wiermann R. (1995) Studies on sporopollenin structure during pollen development. Z. Naturforsch. 50c: 487–492.

    Google Scholar 

  • Miyamura S., Kuroiwa T., Nagata T. (1987) Disappearance of plastids and mitochondrial nucleoids during the formation of generative cells of higher plants revealed by fluorescence microscopy. Protoplasma 141: 149–159.

    Google Scholar 

  • Mulcahy D. L. (1981) Pollen tetrads in the detection of environmental mutagenesis. Environ. Health Perspect. 37: 91–94.

    Google Scholar 

  • Nepi M., Ciampolini F., Pacini E. (1995) Development ofCucurbita pepo pollen. Ultrastructure and histochemistry of the sporoderm. Can. J. Bot. 73: 1046–1057.

    Google Scholar 

  • Nepi M., Pacini E. (1993) Pollination, pollen viability and pistil receptivity inCucurbita pepo. Ann. Bot. 72: 527–536.

    Google Scholar 

  • Nepi M., Pacini E. (1999) What may be the significance of polysiphony inLavatera arborea? In: Clément C., Pacini E., Audran J. C. (eds.) Anther and pollen: from biology to biotechnology. Springer, Berlin, pp. 13–20.

    Google Scholar 

  • Nilsson S., Praglowski J. (1992) Erdtman's handbook of palinology. Munksgaard, Copenaghen.

    Google Scholar 

  • O'Brien T. P., Feder N., McCully M. E. (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59: 368–373.

    Google Scholar 

  • O'Brien T. P., McCully M. E. (1981) The study of plant structure — principles and selected methods. Termarcarphi Pty, Melbourne.

    Google Scholar 

  • Ockendon D. J., Gates P. J. (1976) Reduced pollen viability in the onion (Allium cepa). New Phytol. 76: 511–517.

    Google Scholar 

  • Pacini E. (1990) Harmomegathic character ofPteridophyta spores andSpermatophyta pollen. Plant Syst. Evol. [Suppl.] 5: 53–69.

    Google Scholar 

  • Pacini E. (1997) Tapetum character states: analytical keys for tapetum types and activities. Can. J. Bot. 75: 1448–1459.

    Google Scholar 

  • Pacini E., Cresti M., Ciampolini F., Bini G. (1978) Vitalità, presenza di amido, anomalie morfologiche nel polline di 48 cultivar di olivo. In: Sansavini S. (ed.) La fertilità nelle piante da frutto. Società Orticola Italiana, Bologna, pp. 643–654.

    Google Scholar 

  • Pacini E., Franchi G. G. (1987) Il polline: biologia ed applicazioni. Piccin, Padova.

    Google Scholar 

  • Pacini E., Franchi G. G. (1993) Role of the tapetum in pollen and spore dispersal. Plant Syst. Evol. [Suppl.] 7: 1–11.

    Google Scholar 

  • Pacini E., Franchi G. G. (1998) Pollen dispersal units, gynoecium and pollination. In: Owens S. J., Rudall P. J. (eds.) Reproductive biology. Royal Botanic Garden, Kew, pp. 183–195.

    Google Scholar 

  • Pacini E., Franchi G. G. (1999) Types of pollen dispersal units and pollen competition. In: Clément C., Pacini E., Audran J.-C. (eds.) Anther and pollen: from Biology to Biotecnology. Springer, Berlin, pp. 1–11.

    Google Scholar 

  • Pacini E., Franchi G. G., Bellani L. M. (1985a) Pollen grain development in the olive (Olea europaea L.): ultrastructure and anomalies. In: Willemse M. T. M., Van Went J. L. (eds.) Sexual reproduction in seed plants, ferns and mosses. Pudoc, Wageningen, pp. 25–27.

    Google Scholar 

  • Pacini E., Franchi G. G., Hesse M. (1985b) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst. Evol. 75: 183–196.

    Google Scholar 

  • Pacini E., Franchi G. G., Ripaccioli M. (1999) Ripe pollen structure and histochemistry of some gymnosperms. Plant Syst. Evol. 217: 81–99.

    Google Scholar 

  • Pacini E., Franchi G. G., Sarfatti G. (1981) On the widespread occurrence of poral sporophytic proteins in pollen of dicotyledons. Ann. Bot. 47: 405–408.

    Google Scholar 

  • Pacini E., Juniper B. E. (1979) The ultrastructure of pollen grain development in the olive (Olea europea). 1. Proteins in the pore. New Phytol. 83: 157–163.

    Google Scholar 

  • Pacini E., Viegi L. (1995) Total polysaccharide content of developing pollen in two angiosperm species. Grana 34: 237–241.

    Google Scholar 

  • Pálfi G., Mihalik E. (1985) Proline staining as a new method for determining the vitality of pollen grains in wind and insect pollinated plants. Acta Bot. Hung. 31: 315–321.

    Google Scholar 

  • Pardi M. L., Viegi L., Cela Renzoni G., Franchi G. G., Pacini E. (1996) Effects of acidity on the insoluble polysaccharide content of germinating pollen ofPinus pinea L. andPinus pinaster Aiton. Grana 35: 240–247.

    Google Scholar 

  • Pearse A. G. E. (1985) Histochemistry, theoretical and applied, vol. 2: analytical technology. 4th edn. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Punt W., Blackmore S., Nilsson S., Le Thomas A. (1994) Glossary of pollen and spore terminology. LPP Foundation, Utrecht.

    Google Scholar 

  • Rawlins T. E., Takashi W. N. (1952) Techniques of plant histochemistry and virology. National Press, Millbrae.

    Google Scholar 

  • Reeve R. M. (1959) A specific hydroxilamine-ferric chloride reaction for histochemical localization of pectin. Stain Technol. 34: 209–211.

    Google Scholar 

  • Regan S., Moffatt B. (1990) Cytochemical analysis of pollen development in wild-typeArabidopsis and a male-sterile mutant. Plant Cell 2: 877–889.

    Google Scholar 

  • Russel S. D. (1986) Isolation of sperm cells from the pollen ofPlumbago zeilanica. Plant Physiol. 81: 317–319.

    Google Scholar 

  • Russel S. D., Cresti M., Dumas C. (1990) Recent progress on sperm characterization in flowering plants. Physiol. Plant 80: 669–676.

    Google Scholar 

  • Shivanna K. R., Heslop-Harrison J. (1981) Membrane state and pollen viability. Ann. Bot. 47: 759–770.

    Google Scholar 

  • Skvarla J. J., Larson D. A. (1966) Fine-structural studies ofZea mays pollen. I. Cell membranes and exine ontogeny. Amer. J. Bot. 53: 1112–1125.

    Google Scholar 

  • Southworth D. (1973) Cytochemical reactivity of pollen walls. J. Histochem. Cytochem. 21: 73–80.

    Google Scholar 

  • Southworth D. (1974) Solubility of pollen exine. Amer. J. Bot. 61: 36–44.

    Google Scholar 

  • Southworth D. (1990) Exine biochemistry. In: Blackmore S., Knox R. B. (eds.) Microspores, evolution and ontogeny. Academic Press, London, pp. 193–213.

    Google Scholar 

  • Speranza A., Calzoni G. L., Pacini E. (1997) Occurrence of mono- or disaccharides and polysaccharides reserves in mature pollen grains. Sex. Pl. Reprod. 10: 110–115.

    Google Scholar 

  • Spollen W. G., Nelson C. J. (1994) Response of fructan to water deficit in growing leaves of tall fescue. Plant Physiol. 106: 329–336.

    Google Scholar 

  • Stanley R. G., Linskens H. F. (1974) Pollen: biology, biochemistry and management. Springer, Berlin.

    Google Scholar 

  • Tanaka I. (1988) Isolation of generative cells and their protoplasts from pollen ofLilium longiflorum. Protoplasma 142: 68–73.

    Google Scholar 

  • Tanaka I. (1993) Development of male gametes in flowering plants. J. Pl. Res. 106: 55–63.

    Google Scholar 

  • Tanaka I., Kitazume C., Ito M. (1987) The isolation and culture of lily pollen protoplast. Plant Science 106: 55–63.

    Google Scholar 

  • Thanikaimoni G. (1986) Pollen apertures: form and function. In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores. Form and function. Academic Press, London, pp. 119–136.

    Google Scholar 

  • Vergne P., Delvallee I., Dumas C. (1987) Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permeabilization. Stain Technol. 62: 299–304.

    Google Scholar 

  • Werner D. J., Chang S. (1981) Stain testing viability in stored peach pollen. HortScience 16: 522–523.

    Google Scholar 

  • Wiermann R., Gubatz S. (1992) Pollen wall and sporopollenin. Int. Rev. Cytol. 140: 35–72.

    Google Scholar 

  • Williams E. G., Clarke A. E., Knox R. B. (eds.) (1994) Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Wodehouse R. P. (1935) Pollen grains. McGraw-Hill Book Company, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nepi, M., Franchi, G.G. Cytochemistry of mature angiosperm pollen. Pl Syst Evol 222, 45–62 (2000). https://doi.org/10.1007/BF00984095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984095

Key words

Navigation