Skip to main content
Log in

From anther and pollen ripening to pollen presentation

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The events and processes occurring between pollen maturation, opening of the anther and presentation of pollen to dispersing agents are described. In the final phases of pollen development, starch is always stored; this occurs before the anther opens. Depending on the species, this starch may be totally or partially transformed into: (a) other types of polysaccharides (fructans and rarely callose); (b) disaccharides (sucrose); (c) monosaccharides (glucose and fructose, all situated in the cytoplasm. While awaiting dispersing agents and during dispersal, polysaccharides, especially fructans, and sucrose may be interconverted to control osmotic pressure and prevent loss and uptake of water. Opening of the anther is preceded by disappearance of the locular fluid and in many cases by partial dehydration of the pollen. Pollen generally has a water content between 5 and 50%. Pollen with a high water content may or may not be able to control water retention during pollen exposure and dispersal. Pollen may be dispersed in monads or grouped in pollen dispersing units by the following mechanisms: (i). tangling of filamentous pollen; (ii). adhesion by viscous substances (pollenkitt, tryphine, elastoviscin) derived from the tapetum; (iii). common walls. When the anther opens, the pollen may be dispersed immediately, remain until dispersed (primary presentation), or be presented to pollinators in another part of the flower (secondary presentation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker H. G., Baker I. (1982) Starchy and starchless pollen in the Onagraceae. Ann. Missouri Bot. Gard. 69: 748–754.

    Google Scholar 

  • Beattie A. J., Turnbull C., Hough T., Jobson S., Knox R. B. (1985) The vulnerability of pollen and fungal spores to ant secretion: evidence and some evolutionary implications. Amer. J. Bot. 72: 606–614.

    Google Scholar 

  • Bianchini M., Pacini E. (1996) Explosive anther dehiscence inRicinus communis L. involves cell wall modifications and relative humidity. Int. J. Plant Sci. 157: 739–745.

    Google Scholar 

  • Bino R. J., Dafni A. (1983) Entomophily and nectar secretion in the dioecious gymnospermEphedra aphylla Forsk. In: Mulcahy D. L., Ottaviano E. (eds.) Pollen biology and implications in plant breeding. Elsevier Science, New York, pp. 99–104.

    Google Scholar 

  • Bino R. J., Meeuse A. D. J. (1981) Entomophily in dioecious species ofEphedra: a preliminary report. Acta Bot. Neerl. 30: 151–153.

    Google Scholar 

  • Bonner L. J., Dickinson H. G. (1989) Anther dehiscence inLycopersicum esculentum Mill. I. Structural aspects. New Phytol. 113: 97–115.

    Google Scholar 

  • Campbell S. A., Close T. J. (1997) Dehydrins: genes. Proteins and associations with phenotypic traits. New Phytol. 137: 61–74.

    Google Scholar 

  • Clarke G. C. S. (1979) Spore morphology and Bryophyte systematics. In: Clarke G. C. S., Duckett J. C. (eds.) Bryophyte systematics. Academic Press, London, pp. 231–250.

    Google Scholar 

  • Clement C., Audran J. C. (1995) Anther wall layers control pollen sugar nutrition inLilium. Protoplasma 187: 172–181.

    Google Scholar 

  • Clement C., Audran J. C. (1999) Anther carbohydrates during in vivo and in vitro pollen development. In: Clement C., Pacini E., Audran J. C. (eds.) Anther and pollen: from Biology to Biotechnology. Springer, Berlin, pp. 54–90.

    Google Scholar 

  • Clement C., Laporte P., Audran J. C. (1998) The loculus content and tapetum during pollen development inLilium. Sex. Plant Reprod. 11: 94–106.

    Google Scholar 

  • Cran D. G. (1979) The ultrastructure of fern gametophyte cells. In: Dyer A. F. (ed.) The experimental biology of ferns. Academic Press, London, pp. 171–212.

    Google Scholar 

  • Dafni A., Dukas R. (1986) Insect and wind pollination inUrginea maritima (Liliaceae). Plant Syst. Evol. 154: 1–10.

    Google Scholar 

  • Dannenbaum C., Schill R. (1991) Die Entwicklung der Pollentetraden un Pollinien bei den Asclepiadaceae. Bibliotheca Botanica 141: 1–138.

    Google Scholar 

  • D'arcy W. G., Keating R. C. (eds.) (1996) The anther: form, function and phylogeny. Cambridge University Press, Cambridge.

    Google Scholar 

  • De Frey H. M., Coetzer L. A., Robbertse P. J. (1992) A unique anther-mucilage in the pollination biology ofTylosema esculentum. Sex. Pl. Reprod. 5: 298–303.

    Google Scholar 

  • Dickinson H. G., Lewis D. (1973) The formation of tryphine coating the pollen grains ofRaphanus and its properties relating to the self-incompatibility system. Proc. Roy. Soc. Lond. B 184: 149–165.

    Google Scholar 

  • Edwards J., Jordan J. S. (1992) Reversible anther opening inLilium philadelphicum (Liliaceae): a possible means of enhancing male fitness. Amer. J. Bot. 79: 144–148.

    Google Scholar 

  • Endress P. K. (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge.

    Google Scholar 

  • Endress P. K. (1996) Diversity and evolutionary trends in angiosperm anthers. In: D'Arcy W. G., Keating R. C. (eds.) The anther: form, function and physiology. Cambridge University Press, Cambridge, pp. 92–110.

    Google Scholar 

  • Foster A. S., Gifford E. M. (1974) Comparative morphology of vascular plants. 2nd edn. W. H. Freeman, San Francisco.

    Google Scholar 

  • Faegri K., van der Pijl L. (1979) The Principles of Pollination Ecology. 3rd edn. Pergamon Press, Oxford.

    Google Scholar 

  • Franchi G. G., Bellani L., Nepi M., Pacini E. (1996) Types of carbohydrates reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora 191: 1–17.

    Google Scholar 

  • Franchi G. G., Pacini E. (1996) Types of pollination and seed dispersal in Mediterranean plants. Giorn. Bot. Ital. 130: 579–585.

    Google Scholar 

  • Friis E. M., Crepet W. L. (1988) Time of appearance of floral features. In: Friis E. M., Chaloner W., Crane P. R. (eds.) The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp. 145–177.

    Google Scholar 

  • Halbritter H., Hesse M., Buchner R. (1997) Pollen connecting threads inGymnocalycium (Cactaceae): their origin, function, and systematic relevance. Grana 36: 1–10.

    Google Scholar 

  • Hanning E. (1910) Über den Öffnungsmechanismus der Antheren. Jahrb. Wiss. Bot. 47: 186–218.

    Google Scholar 

  • Harris F. C. L., Beattie A. J. (1991) Viability of pollen carried byApis mellifera L.,Trigena carbonaria Smith andVespula germanica (F.) (Hymenoptera: Apidae, Vespidae). J. Austr. Ent. Soc. 30: 45–47.

    Google Scholar 

  • Heslop-Harrison J. (1987) Pollen germination and pollen-tube growth. Int. Rev. Cytol. 107: 1–78.

    Google Scholar 

  • Heslop-Harrison J., Dickinson H. G. (1969) Time relationship of sporopollenin synthesis associated with tapetum and microspores inLilium. Planta 84: 199–214.

    Google Scholar 

  • Heslop-Harrison J. S., Heslop-Harrison Y., Reger B. J. (1987) Anther-filament extension inLilium: potassium ion movement and some anatomical features. Ann. Bot. 59: 505–515.

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1992a) Cyclical transformations of the actin cytoskeleton of hyacinth pollen subjected to recurrent vapor-phase hydration and dehydration. Bio. Cell. 75: 245–252.

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1992b) Intracellular motility, the actin cytoskeleton and germinability in pollen of wheat (Triticum aestivum L.). Sex. Pl. Reprod 5: 247–255.

    Google Scholar 

  • Hesse M. (1983) Dissimilar pollen tetrad development in Ericaceae and Onagraceae causes family-specific viscin thread configuration. Plant Syst. Evol. 143: 163–165.

    Google Scholar 

  • Hesse M. (1986) Nature, form and function of pollen connecting threads in angiosperms. In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores: form and function. Academic Press, London, pp. 109–119.

    Google Scholar 

  • Hoekstra F. A., Crowe J. H., Crowe L. M., Bilsen D. G. J. L. van (1992) Membrane behaviour and stress tolerance in pollen. In: Ottaviano E., Mulcahy D. L., Sari-Gorla M., Bergamini Mulcahy G. (eds.) Angiosperm pollen and ovules. Springer, New York, pp. 177–186.

    Google Scholar 

  • Horner H. T., Wagner B. L. (1980) The association of druse crystals in the developing stomium ofCapsicum annuum (Solanaceae) anthers. Amer. J. Bot. 67: 1347–1360.

    Google Scholar 

  • Howell G. H., Slater A. T., Knox R. B. (1993) Secondary pollen presentation in angiosperms and its biological significance. Austr. J. Bot. 41: 417–438.

    Google Scholar 

  • Keijzer C. J. (1987a) The process of anther dehiscence and pollen dispersal. 1. The opening mechanism of longitudinal dehiscing anthers. New Phytol. 105: 487–498.

    Google Scholar 

  • Keijzer C. J. (1987b) The process of anther dehiscence and pollen dispersal. 2. The formation and transfer mechanism of pollenkitt, cell wall development in the locule tissues and a function of the orbicules in pollen dispersal. New Phytol. 105: 499–507.

    Google Scholar 

  • Keijzer C. J. (1999) Mechanisms of angiosperm anther dehiscence, a historical review. In: Clement C., Pacini E., Audran J. C. (eds.) Anther and pollen: from Biology to Biotechnology. Springer, Berlin, pp. 54–67.

    Google Scholar 

  • Keijzer C. J., Cresti M. (1987) A comparison of anther development in male sterileAloe vera and male fertileAloe ciliaris. Ann. Bot. 59: 533–542.

    Google Scholar 

  • Keijzer C. J., Hoek I. H. S., Willemse M. T. M. (1987) The process of anther dehiscence and pollen dispersal. 3. The dehydration of the filament tip and the anther in some monocotyledonous species. New Phytol. 106: 281–287.

    Google Scholar 

  • Keijzer C. J., Leferinnk-Ten Klooster H. B., Reinders M. C. (1996) The mechanics of the grass flower: anther dehiscence and pollen shedding in maize. Ann. Bot. 78: 15–21.

    Google Scholar 

  • Keijzer C. J., Willemse M. T. M. (1988) Tissue interactions in the developing locule ofGasteria verrucosa during microgametogenesis. Acta Bot. Neerl. 37: 475–492.

    Google Scholar 

  • Knox R. B., McConchie C. A. (1986) Structure and functions of compound pollen. In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores: form and function. Academic Press for the Linnean Society, London, pp. 265–282.

    Google Scholar 

  • Kress W. J. (1986) Exineless pollen: structure and pollination systems of TropicalHeliconia (Heliconiaceae). In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores: form and function. Academic Press for the Linnean Society, London, pp. 329–345.

    Google Scholar 

  • Larkum A. W. D., Den Hartog C. (1989) Evolution and biogeography of seagrasses. In: Larkum A. W. D., McComb A. J., Sheperd S. A. (eds.) Biology of seagrasses. Elsevier, Amsterdam, pp. 112–156.

    Google Scholar 

  • Lehman H., Neidhart H. V., Schlenkermann G. (1984) Ultrastructural investigations on sporogenesis inEquisetum fluviatile. Protoplasma 123: 38–47.

    Google Scholar 

  • Lisci M., Tanda C., Pacini E. (1994) Pollination ecophysiology ofMercurialis annua L. (Euphorbiaceae) an anemophilous species flowering all year around. Ann. Bot 74: 125–135.

    Google Scholar 

  • Lisci M., Cardinali G., Pacini E. (1996) Pollen dispersal and role of pollenkitt inMercurialis annua L. (Euphorbiaceae). Flora 191: 385–391.

    Google Scholar 

  • Lord E. (1981) Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot. Rev. 47: 421–447.

    Google Scholar 

  • Lughadha E. N., Proenca C. (1996) A survey of the reproductive biology of the Myrtoideae (Myrtaceae). Ann. Missouri Bot. Gard. 83: 480–503.

    Google Scholar 

  • McConchie C. A., Knox R. B. (1989) Pollination and reproductive biology of seagrasses. In: Larkum A. W. D., McComb A. J., Sheperd S. A. (eds.) Biology of seagrasses. Elsevier, Amsterdam, pp. 74–111.

    Google Scholar 

  • Manning J. C. (1996) Diversity of endothecial patterns in the angiosperms. In: D'Arcy W. G., Keating R. C. (eds.) The anther: form, function and phylogeny. Cambridge University Press, Cambridge, pp. 136–158.

    Google Scholar 

  • Mesquida J., Renard M. (1989) Etude à germer in vitro du pollen de colza (Brassica napus) récolté par l' abeille domestique (Apis mellifica L.). Apidologie 20: 197–205.

    Google Scholar 

  • Mulcahy D. L., Bergamini Mulcahy G. (1987) The effects of pollen competition. Amer. Sci. 75: 44–50.

    Google Scholar 

  • Nepi M., Pacini E. (1993) Pollination, pollen viability and pistil receptivity inCucurbita pepo. Ann. Bot. 72: 526–536.

    Google Scholar 

  • Nepi M., Pacini E. (1999) What may be the significance of polysiphony inLavatera arborea? In: Clement C., Pacini E., Audran J. C. (eds.) Anther and pollen: from biology to biotechnology. Springer, Berlin, pp. 13–20.

    Google Scholar 

  • Nepi M., Ciampolini F., Pacini E. (1995) Development ofCucurbita pepo pollen: ultrastructure and histochemistry of the sporoderm. Can. J. Bot. 73: 1046–1057.

    Google Scholar 

  • Nepi M., Ciampolini F., Pacini E. (1996) Plastid differentiation duringCucurbita pepo (Cucurbitaceae) pollen grain development. Sex. Plant Reprod. 9: 17–24.

    Google Scholar 

  • Nicholls M. C., Cook D. K. (1986) The function of pollen tetrads inTypha (Typhaceae). Verhoff. Geobot. Inst. ETH 87: 112–119.

    Google Scholar 

  • Nilsson L. A. (1992) Long pollinia transport on eyes: hawk-moth pollination ofCynorkis uniflora Lindley (Orchidaceae) in Madagascar. Bot. J. Linn. Soc. 109: 145–160.

    Google Scholar 

  • Noel A. R. A. (1983) The endothecium: a neglected criterion in taxonomy and phylogeny? Bothalia 14: 833–838.

    Google Scholar 

  • O'Brien T. P., McCully M. E. (1981) The study of plant structure: principles and selected methods. Thermarcarphy Pty Ltd., Melbourne.

    Google Scholar 

  • Ottaviano E., Mulcahy D. L. (1989) Genetics of angiosperm pollen. Advanc. Genet. 26: 1–64.

    Google Scholar 

  • Pacini E. (1990) Harmomegathic characters of Pteridophyta spores and Spermatophyta pollen. In: Hesse M., Ehrendorfer F. (eds.) Morphology, development and systematic relevance of pollen and spores. Plant Syst. Evol. [Suppl. 5]: 53–69.

    Google Scholar 

  • Pacini E. (1994) Cell biology of anther and pollen development. In: Williams E. G., Knox R. B., Clarke A. E. (eds.) Genetic control of self incompatibility and reproductive development in flowering plants. Dordrecht, Kluwer, pp. 289–308.

    Google Scholar 

  • Pacini E. (1996a) Types and meaning of pollen carbohydrate reserves. Sex, Plant Reprod. 9: 362–366.

    Google Scholar 

  • Pacini E. (1996b) Tapetum types in the Compositae: form and function. In: Hind D. J. H., Beentije H., Pope G. V. (eds.) Proceedings of the International Compositae Conference. Vol. I. Royal Botanic Gardens, Kew, pp. 21–28.

    Google Scholar 

  • Pacini E. (1997) Tapetum character states: analytical keys for tapetum types and activities. Can. J. Bot. 75: 1448–1459.

    Google Scholar 

  • Pacini E., Bellani L. M., Lozzi R. (1986) Pollen, tapetum and anther development in two cultivars of sweet cherry (Prunus avium). Phytomorphology 36: 197–210.

    Google Scholar 

  • Pacini E., Franchi G. G. (1982) Germination of pollen inside anthers in some non-cleistogamic species. Caryologia 35: 205–215.

    Google Scholar 

  • Pacini E., Franchi G. G. (1983) Pollen grain development inSmilax aspera L. and possible functions of the loculus. In: Mulcahy D. L., Ottaviano E. (eds.) Pollen Biology and implications in plant breeding. Elsevier Science, New, York, pp. 183–190.

    Google Scholar 

  • Pacini E., Franchi G. G. (1992) Diversification and evolution of the tapetum. In: Blackmore S., Barnes S. H. (eds.) Pollen and spores: patterns of diversification. Syst. Assoc. Clarendon Press, Oxford, pp. 301–316.

    Google Scholar 

  • Pacini E., Franchi G. G. (1993) Role of tapetum in pollen and spore dispersal. In: Hesse M., Pacini E., Willemse M. T. M. (eds.) The tapetum: Cytology, Function, Biochemistry and Evolution. Plant Syst. Evol. [Suppl. 7]: 1–11.

    Google Scholar 

  • Pacini E., Franchi G. G. (1996) Some cytological, ecological and evolutionary aspects of pollination. Acta Soc. Bot. Pol. 65: 11–16.

    Google Scholar 

  • Pacini E., Franchi G. G. (1998) Pollen dispersal units, gynoecium and pollination. In: Owens S. J., Rudall P. J. (eds.) Reproductive Biology Royal Botanic Gardens, Kew, pp. 183–195.

  • Pacini E., Franchi G. G. (1999a) Types of pollen dispersal units and pollen competition. In: Clement C., Pacini E., Audran J. C. (eds.) Anther and pollen: from biology to biotechnology. Springer, Berlin, pp. 1–11.

    Google Scholar 

  • Pacini E., Franchi G. G. (1999b) Pollen grain sporoderm and types of dispersal units. Acta Soc. Bot. Pol. 68: 299–305.

    Google Scholar 

  • Pacini E., Franchi G. G. (2000) Types of pollen dispersal units in monocots. Austr. J. Bot. (in press).

  • Pacini E., Franchi G. G., Lisci M., Nepi M. (1997) Pollen viability related to type of pollination in six angiosperm species. Ann. Bot. 80: 83–87.

    Google Scholar 

  • Pacini E., Franchi G. G., Ripaccioli M. (1999) Ripe pollen and histochemistry of some gymnosperms. Plant Syst. Evol. 217: 81–99.

    Google Scholar 

  • Pacini E., Keijzer C. J. (1989) Ontogeny of intruding non-periplasmodial tapetum in the wild cichory (Cichorium intybus L. Compositae) Plant Syst. Evol. 167: 149–164.

    Google Scholar 

  • Pacini E., Viegi L. (1995) Total polysaccharide content of developing pollen in two angiosperm species. Grana 34: 237–241.

    Google Scholar 

  • Pandolfi T., Pacini E. (1995) The pollinium ofLoroglossum hircinum (L.) C. Rich. (Orchidaceae) between pollination and pollen tube emission. Plant Syst. Evol. 196: 141–151.

    Google Scholar 

  • Pandolfi T., Pacini E., Calder D. M. (1993) Ontogenesis of monad pollen inPterostylis plumosa (Orchidaceae: Neottioideae). Plant Syst. Evol. 186: 175–185.

    Google Scholar 

  • Perryman T. C., Marcellos H. (1988) The rhythm of flower opening inVicia faba L. FABIS Newsletter 21: 17–18.

    Google Scholar 

  • Piffanelli P., Ross J. H. H., Murphy D. J. (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex. Plant Reprod. 11: 65–80.

    Google Scholar 

  • Rose M. J., Barthlott H. W. (1995) Pollen connecting threads inHeliconia (Heliconiaceae). Plant Syst. Evol. 195: 61–65.

    Google Scholar 

  • Speranza A., Calzoni G. L., Pacini E. (1997) Occurrence of mono- or disaccharides and polysaccharide reserves in mature pollen grains. Sex. Plant Reprod. 10: 110–115.

    Google Scholar 

  • Stanley R. G., Linskens H.-F. (1974) Pollen: biology, biochemistry and management. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Tanaka I. (1993) Development of male gametes in flowering plants. J. Plant Res. 55: 56–63.

    Google Scholar 

  • Vesprini J. L., Pacini E. (2000) Temperature dependent floral longevity in twoHelleborus species. Plant Biosystems (in press).

  • Vogel S. (1983) Ecophysiology of zoophilic pollination. In: Lange O. L., Nobel P. S., Osmond C. B., Ziegler H. (eds.) Physiological Plant Ecology III. (Encyclopedia of Plant Physiology, NS vol 12c). Springer, Berlin, pp. 83–97.

    Google Scholar 

  • Weber M. (1989) Ultrastructural changes in maturing pollen ofApium nodiflorum L. (Apiaceae), with special reference to endoplasmic reticulum. Protoplasma 152: 69–76.

    Google Scholar 

  • Weber M. (1991) The transfer of pollenkitt inSmyrnium perfoliatum (Apiaceae). Ann. Bot. 68: 63–68.

    Google Scholar 

  • Westerkamp C. (1989) Von Pollenhaufen. Nudelspritzen und Pseudo-Staubbattern: Blutenstaub aus zweiter Hand. Palmengarten 53: 146–149.

    Google Scholar 

  • Wolter M., Schill R. (1986) Ontogenie von Pollen massulae und Pollinien bei den Orchideen. Tropische und subtropische Pflanzenwelt 56: 1–93.

    Google Scholar 

  • Wodehouse R. P. (1953) Pollen grains. McGraw-Hill, New York.

    Google Scholar 

  • Yates I. E., Sparks D. (1993) Environmental regulation of anther dehiscence and pollen germination in pecan. J. Amer. Soc. Hort. Sci. 118: 699–706.

    Google Scholar 

  • Yeo P. F. (1993) Secondary pollen presentation: form, function and evolution. Plant Syst. Evol. [Suppl.] 6, Springer, Wien, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacini, E. From anther and pollen ripening to pollen presentation. Pl Syst Evol 222, 19–43 (2000). https://doi.org/10.1007/BF00984094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984094

Key words

Navigation