Skip to main content
Log in

Respiratory gas exchange during thermogenesis inPhilodendron selloum Koch

  • Published:
Planta Aims and scope Submit manuscript

Abstract

During peak thermogenesis of anthesis, high rates of respiration by the sterile male florets on the spadix ofPhilodendron selloum significantly reduce the oxygen tension (PO 2) and raise CO2 tension between the florets. Nevertheless, respiration is not limited by the availability of O2 under natural conditions. At experimental PO 2 below about 17 kPa, however, florets begin to show decreased O2 consumption. A respiratory exchange ratio of 0.83 indicates that the major energy source is not starch, but is probably lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\beta _{O_2 } \) :

capacitance of the gas phase for O2 (ml O2 cm-3 kPa-1)

DO 2 :

binary diffusion coefficient of O2 in air (cm2 min-1)

KO 2 :

Krogh's diffusion coefficient (ml O2 cm-2 min-1 kPa-1 cm)

PO 2 PCO 2 :

partial pressures of O2 and CO2 (kPa)

\(\dot V_{O_2 } \) :

rate of O2 consumption (ml O2 g-1 h-1)

Fgas :

fractional gas volume

P80 :

O2 partial pressure at which\(\dot V_{O_2 } \) falls below 80% of maximum

RE:

respiratory exchange ratio\((\dot V_{CO_2 } /\dot V_{O_2 } )\)

References

  • ap Rees, T., Fuller, W.A., Wright, B.W. (1976) Pathways of carbohydrate oxidation during thermogenesis by the spadix ofArum maculatum. Biochim. Biophys. Acta437, 22–35

    Google Scholar 

  • ap Rees, T., Wright, B.W., Fuller, W.A. (1977) Measurements of starch breakdown as estimates of glycolysis during thermogenesis by the spadix ofArum maculatum L. Planta134, 53–56

    Google Scholar 

  • Berger, C., Schnepf, E. (1970) Entwicklung undAltern der Spadix-Appendices vonSauromatum guttatum Schott undArum maculatum L. I. Veränderungen der Feinstruktur. Protoplasma69, 237–251b

    Google Scholar 

  • Bulpin, P.V., ap Rees, T. (1978) Starch breakdown in the spadix ofArum maculatum. Phytochemistry17, 397–399

    Google Scholar 

  • Faegri, K., van der Pijl, L. (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Forward, D.F. (1964) The respiraton of bulky organs. In: Plant physiology—a treatise, vol. 4A, pp. 311–376, Steward, F.C., ed. Academic Press, New York London

    Google Scholar 

  • Hackett, D.P. (1957) Respiratory mechanisms in the aroid spadix. J. Exp. Bot.8, 157–171

    Google Scholar 

  • Hill, A.V. (1929) The diffusion of oxygen and lactic acid through tissues. Proc. R. Soc. London Ser. B104, 39–96

    Google Scholar 

  • James, W.O., Beevers, H. (1950) The respiration ofArum spadix. A rapid respiration, resistant to cyanide. New Phytol.49, 353–374

    Google Scholar 

  • Knutson, R.M. (1974) Heat production and temperature regulation in Eastern skunk cabbage. Science186, 746–747

    Google Scholar 

  • Lance, P.C. (1972) La respiration de l'Arum maculatum au cours du développement de l'inflorescence. Ann. Sci. Nat. Bot. (Paris)12, 477–495

    Google Scholar 

  • Levy, R.I., Schneiderman, H.A. (1966) Discontinuous respiration in insects. II. The direct measurement and significance of changes in tracheal gas composition during the respiratory cycle of silkworm pupae. J. Insect Physiol.12, 83–104

    Google Scholar 

  • Meeuse, B.J.D. (1966) The voodoo lily. Sci. Am., July 1966, pp, 80–89

  • Nagy, K.A., Odell, D.K., Seymour, R.S. (1972) Temperature regulation by the inflorescence ofPhilodendron. Science178, 1195–1197

    Google Scholar 

  • Paganelli, C.V., Ackerman, R.A., Rahn, H. (1978) The avian egg: in vivo conductances to oxygen, carbon dioxide, and water vapor in late development. In: Respiratory function in birds, adult and embryonic, pp. 212–218, Piiper, J., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Scholander, P.F. (1947) Analyzer for accurate estimation of respiratory gases in one-half cubic centimeter samples. J. Biol. Chem.167, 235–237

    Google Scholar 

  • Scholander, P.F., Evans, H.J. (1949) Microanalysis of fractions of a cubic millimeter of gas. J. Biol. Chem.169, 551–560

    Google Scholar 

  • Seymour, R.S., Bartholomew, G.A., Barnhart, M.C. (1983) Respiration and heat production by the inflorescence ofPhilodendron selloum Koch. Planta157, 336–343

    Google Scholar 

  • Simon, E.W. (1959) Respiration rate and mitochondrial oxidase activity inArum spadix. J. Exp. Biol.10, 125–133

    Google Scholar 

  • Sokal, R.R., Rohlf, F.J. (1969) Biometry. Freeman, San Francisco

    Google Scholar 

  • Vogel, S. (1962) Duftdrüsen im Dienste der Bestäubung. Akad. Wiss. Lit. Mainz, Abh. Mat-Naturwiss. Kl. pp. 599–763

  • Walker, D.B. (1980) Structural and histochemical study of the heat-generating, sterile, male flowers inPhilodendron selloum (Abstr.). Botany 80, Vancouver, B.C.

  • Walker, D.B., Gysi, J., Sternberg, L., DeNiro, M.J. (1983) Direct respiration of lipids during heat production in the inflorescence ofPhilodendron selloum. Science220, 419–421

    Google Scholar 

  • Wilson, R.H., Smith, B.N. (1971) Uncoupling ofSauromatum spadix mitochondria as a mechanism of thermogenesis. Z. Pflanzenphysiol.65, 124–129

    Google Scholar 

  • Woolley, J.T. (1962) Potato tuber tissue respiration and ventilation. Plant Physiol.37, 793–798

    Google Scholar 

  • Yocum, C.S., Hackett, D.P. (1957) Participation of cytochromes in the respiration of the Aroid spadix. Plant Physiol.32, 186–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seymour, R.S., Barnhart, M.C. & Bartholomew, G.A. Respiratory gas exchange during thermogenesis inPhilodendron selloum Koch. Planta 161, 229–232 (1984). https://doi.org/10.1007/BF00982917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00982917

Key words

Navigation