Skip to main content
Log in

Stress protein synthesis by crayfish CNS tissue in vitro

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Some crustacean axons remain functional for months after injury. This unusual property may require stress proteins synthesized by those neurons or provided to them by glial cells. To begin to explore this hypothesis, we examined the conditions that stimulated stress protein synthesis by crayfish CNS tissue in vitro. Incubation for 1–15 h with arsenite or at temperatures about 15°C higher than the acclimation temperature of 20°C induced transient expression of several stress proteins. The heat stress response was blocked by Actinomycin D, suggesting that synthesis of new mRNA was required. In addition, the major crayfish 66 kD stress protein and its mRNA had sequence identities with the 70 kD stress proteins of mammals. Since the crayfish stress response has much in common with that of other organisms, the unique advantages of the crayfish nervous system can be used to study the impact of stress proteins on glial and neuronal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bittner, G. D. 1973. Degeneration and regeneration in crustacean neuromuscular systems. Amer. Zool. 13:379–408.

    Google Scholar 

  2. Bittner, G. D. 1977. Trophic interactions of crustacean neurons, Pages 507–532, in Hoyle, G. (ed.) Identified Neurons and Behavior.

  3. Bittner, G. D. 1981. Trophic interactions of CNS giant axons in crayfish. Comp. Biochem. Physiol. 68A:299–306.

    Google Scholar 

  4. Bittner, G. D. 1988. Long-term survival of severed distal axonal stumps in vertebrates and invertebrates. Amer. Zool. 28:1165–1179.

    Google Scholar 

  5. Hoy, R. R. 1973. The curious nature of degeneration and regeneration in motor neurons and central connectives of the crayfish, Pages 203–232, in Young, D. (ed.) Developmental Neurobiology of Arthropods. Cambridge University Press.

  6. Atwood, H. L., Govind, C. K., and Bittner, G. D. 1973. Ultrastructure of nerve terminals and muscle fibers in denervated crayfish muscle. Z. Zellforsch. 146:155–165.

    PubMed  Google Scholar 

  7. Bittner, G. D. 1973. Trophic dependence of fiber diameter in a crustacean muscle. Exp. Neurol. 41:38–53.

    PubMed  Google Scholar 

  8. Bouton, M. S., and Bittner, G. D. 1981. Regeneration of motor axons in crayfish limbs: distal stump activation followed by synaptic reformation. Cell Tissue Res. 219:379–392.

    PubMed  Google Scholar 

  9. Wine, J. J. 1973. Invertebrate central neurons: orthograde degeneration and retrograde changes after axonotomy. Exp. Neurol. 38:157–169.

    PubMed  Google Scholar 

  10. Wine, J. J. 1973. Invertebrate synapse: long-term maintenance of post-synaptic morphology following denervation. Exp. Neurol. 41:649–660.

    PubMed  Google Scholar 

  11. Nordlander, R., and Singer, M. 1973. Degeneration and regeneration of severed crayfish sensory fibers: an ultrastructural study. J. Comp. Neurol. 152:175–192.

    PubMed  Google Scholar 

  12. Burdon, R. H. 1986. Heat shock and the heat shock proteins. Biochem. J. 240:313–324.

    PubMed  Google Scholar 

  13. Flynn, G. C., Chappell, T. G., and Rothman, J. E. 1989. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245:385–390.

    PubMed  Google Scholar 

  14. Lindquist, S., and Craig, E. A. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631–677.

    PubMed  Google Scholar 

  15. Schlesinger, M. J. 1986. Heat shock proteins: the search for functions. J. Cell Biol. 103:321–325.

    PubMed  Google Scholar 

  16. Subjeck, J. R., and Shyy, T. T. 1986. Stress protein systems of mammalian cells. Am. J. Physiol. 250:C1-C17.

    PubMed  Google Scholar 

  17. Welch, W. J., Mizzen, L. A., and Arrigo, A.-P. 1989. Structure and function of mammalian stress proteins, Pages 187–202, in Pardue, M. L., Feramisco, J. R., and Lindquist, S. (eds) UCLA Symp. Molec. Cell Biol., Vol. 96, Stress-Induced Proteins. Alan R. Liss, New York.

    Google Scholar 

  18. Barbe, M. F., Tytell, M., Gower, D. J., and Welch, W. J. 1988. Hyperthermia protects against light damage in the rat retina. Science 241:1817–1820.

    PubMed  Google Scholar 

  19. Chopp, M., Chen, H., Ho, K.-L., Dereski, M. O., Brown, E., Hetzel, F. W., and Welch, K. M. A. 1989. Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurol. 39:1396–1398.

    Google Scholar 

  20. Finley, D., Ozlaynak, E., and Varshavsky, A. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046.

    PubMed  Google Scholar 

  21. Johnston, R. N., and Kucey, B. L. 1988. Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242:1551–1554.

    PubMed  Google Scholar 

  22. Loomis, W. F., and Wheeler, S. A. 1982. Chromatin-associated heat shock proteins of Dictyostelium. Dev. Biol. 90:412–418.

    PubMed  Google Scholar 

  23. Pelham, H. R. B. 1984. Hsp 70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J. 3:3095–3100.

    PubMed  Google Scholar 

  24. Riabowol, K. T., Mizzen, L. A., and Welch, W. J. 1988. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp 70. Science 242:433–436.

    PubMed  Google Scholar 

  25. Sanchez, Y., and Lindquist, S. L. 1990. Hsp 104 required for induced thermotolerance. Science 248:1112–1115.

    PubMed  Google Scholar 

  26. Tytell, M., Greenberg, S. G., and Lasek, R. J. 1986. Heat shock-like protein is transferred from glia to axon. Brain Res. 363:161–164.

    PubMed  Google Scholar 

  27. Meyer, M. R., and Bittner, G. D. 1978. Biochemical studies of trophic dependencies in crayfish giant axons. Brain Res. 143:213–232.

    PubMed  Google Scholar 

  28. Moehlenbruck, J. W., Zeagler, J. W., Seshan, K. R., Sheller, R. A., and Bittner, G. D. 1986. Mechanisms for long-term survival of enucleated axons. I. Intercellular protein transfer. Trans. Soc. Neurosci. 12:1151.

    Google Scholar 

  29. Hakimzadeh, R., and Bradley, B. P. 1990. The heat shock response in the copepod Eurytemora affinis (Poppe). J. Therm. Biol. 15:67–78.

    Google Scholar 

  30. McLennan, A. G., and Miller, D. 1990. A biological role for the heat shock response in crustaceans. J. Therm. Biol. 15:61–66.

    Google Scholar 

  31. Stone, G. C. and Dougher, M. M. 1988. Heat stress induces changes in protein synthesis and fast axonal transport in bullfrog sensory neurons. J. Neurochem. 51:960–966.

    PubMed  Google Scholar 

  32. Grossfeld, R. M., Klinge, M. W., Lieberman, E. M., and Stewart, L. C. 1988. Axon-glia transfer of a protein and a carbohydrate. Glia 1:292–300.

    PubMed  Google Scholar 

  33. Mizzen, L. A., and Welch, W. J. 1988. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J. Cell Biol. 106:1105–1116.

    PubMed  Google Scholar 

  34. Hames, B. D., and Rickwood, D. (eds.) 1981. Gel Electrophoresis of Proteins. IRL Press, Oxford.

    Google Scholar 

  35. Mans, R. J., and Novelli, G. D. 1961. Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disk method. Arch. Biochem. Biophys. 94:48–53.

    Google Scholar 

  36. Chomczynski, P., and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

    PubMed  Google Scholar 

  37. Nishimura, R. N., Dwyer, B. E., Clegg, K., Cole, R., and de Vellis, J. 1991. Comparison of the heat shock response in cultured cortical neurons and astrocytes. Mol. Br. Res. 9:39–45.

    Google Scholar 

  38. Allen, J. M., Sasek, C. A., Martin, J. B., and Heinrich, G. 1987. Use of complementary125I-labeled RNA for single cell resolution by in situ hybridization. BioTechniques 5:774–777.

    Google Scholar 

  39. Harper, M. E., and Marselle, L. M. 1987. RNA detection and localization in cells and tissue sections by in situ hybridization of 35S-labeled RNA probes Pages 539–551, in Gottesman, M. M. (ed.) Meth. Enzymol., Vol. 151. Academic Press, NY.

    Google Scholar 

  40. Nishimura, R. N., Dwyer, B. E., Welch, W., Cole, R., de Vellis, J., and Liotta, K. 1988. The induction of the major heat-stress protein in purified rat glial cells. J. Neurosci. Res. 20:12–18.

    PubMed  Google Scholar 

  41. Brown, I. R., and Rush, S. J. 1984. Induction of a ‘stress’ protein in intact mammalian organs after the intravenous administration of sodium arsenite. Biochem. Biophys. Res. Commun. 120:150–155.

    PubMed  Google Scholar 

  42. Brown, I. R., Lowe, D. G., and Moran, L. A. 1985. Expression of heat shock genes in fetal and maternal rabbit brain. Neurochem. Res. 10:1277–1284.

    Google Scholar 

  43. Gower, D. J., Hollman, C., Lee, K. S., and Tytell, M. 1989. Spinal cord injury and the stress protein response. J. Neurosurg. 70:605–611.

    PubMed  Google Scholar 

  44. Nowak, T. S. Jr. 1985. Synthesis of a stress protein following transient ischemia in the gerbil. J. Neurochem. 45:1635–1641.

    PubMed  Google Scholar 

  45. Nowak, T. S. Jr., Bond, U., and Schlesinger, M. J. 1990. Heat shock RNA levels in brain and other tissues after hyperthermia and transient ischemia. J. Neurochem. 54:451–458.

    PubMed  Google Scholar 

  46. Gonzalez, M. F., Shiraishi, K., Hisanaga, K., Sagar, S. M., Mandabach, M., and Sharp, F. R. 1989. Heat shock proteins as markers of neural injury. Mol. Brain Res. 6:93–100.

    PubMed  Google Scholar 

  47. Brown, I. R., Rush, S., and Ivy, G. O. 1989. Induction of a heat shock gene at the site of tissue injury in the rat brain. Neuron 2:1559–1564.

    PubMed  Google Scholar 

  48. Magnusson, K., and Wieloch, T. 1989. Impairment of protein ubiquitination may cause delayed neuronal death. Neurosci. Lett. 96:264–270.

    PubMed  Google Scholar 

  49. Mansing, T. E., and Brown, I. R. 1989. Cellular localization of heat shock gene expression in rabbit cerebellum by in situ hybridization with plastic-embedded tissue. Neurochem. Res. 14:725–731.

    PubMed  Google Scholar 

  50. Vass, K., Welch, W. J., and Nowak, T. S. Jr. 1988. Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol. 77:128–135.

    PubMed  Google Scholar 

  51. Atwood, H. L., Lang, F., and Morin, W. A. 1972. Synaptic vesicles: selective depletion in crayfish excitatory and inhibitory axons. Science 176:1353–1355.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochelle, J.M., Grossfeld, R.M., Bunting, D.L. et al. Stress protein synthesis by crayfish CNS tissue in vitro. Neurochem Res 16, 533–542 (1991). https://doi.org/10.1007/BF00974871

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00974871

Key Words

Navigation