Neurochemical Research

, Volume 16, Issue 5, pp 533–542 | Cite as

Stress protein synthesis by crayfish CNS tissue in vitro

  • Julie M. Rochelle
  • Robert M. Grossfeld
  • Douglas L. Bunting
  • Michael Tytell
  • Barney E. Dwyer
  • Zheng-yu Xue
Original Articles

Abstract

Some crustacean axons remain functional for months after injury. This unusual property may require stress proteins synthesized by those neurons or provided to them by glial cells. To begin to explore this hypothesis, we examined the conditions that stimulated stress protein synthesis by crayfish CNS tissue in vitro. Incubation for 1–15 h with arsenite or at temperatures about 15°C higher than the acclimation temperature of 20°C induced transient expression of several stress proteins. The heat stress response was blocked by Actinomycin D, suggesting that synthesis of new mRNA was required. In addition, the major crayfish 66 kD stress protein and its mRNA had sequence identities with the 70 kD stress proteins of mammals. Since the crayfish stress response has much in common with that of other organisms, the unique advantages of the crayfish nervous system can be used to study the impact of stress proteins on glial and neuronal function.

Key Words

Stress protein heat crayfish CNS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bittner, G. D. 1973. Degeneration and regeneration in crustacean neuromuscular systems. Amer. Zool. 13:379–408.Google Scholar
  2. 2.
    Bittner, G. D. 1977. Trophic interactions of crustacean neurons, Pages 507–532, in Hoyle, G. (ed.) Identified Neurons and Behavior.Google Scholar
  3. 3.
    Bittner, G. D. 1981. Trophic interactions of CNS giant axons in crayfish. Comp. Biochem. Physiol. 68A:299–306.Google Scholar
  4. 4.
    Bittner, G. D. 1988. Long-term survival of severed distal axonal stumps in vertebrates and invertebrates. Amer. Zool. 28:1165–1179.Google Scholar
  5. 5.
    Hoy, R. R. 1973. The curious nature of degeneration and regeneration in motor neurons and central connectives of the crayfish, Pages 203–232, in Young, D. (ed.) Developmental Neurobiology of Arthropods. Cambridge University Press.Google Scholar
  6. 6.
    Atwood, H. L., Govind, C. K., and Bittner, G. D. 1973. Ultrastructure of nerve terminals and muscle fibers in denervated crayfish muscle. Z. Zellforsch. 146:155–165.PubMedGoogle Scholar
  7. 7.
    Bittner, G. D. 1973. Trophic dependence of fiber diameter in a crustacean muscle. Exp. Neurol. 41:38–53.PubMedGoogle Scholar
  8. 8.
    Bouton, M. S., and Bittner, G. D. 1981. Regeneration of motor axons in crayfish limbs: distal stump activation followed by synaptic reformation. Cell Tissue Res. 219:379–392.PubMedGoogle Scholar
  9. 9.
    Wine, J. J. 1973. Invertebrate central neurons: orthograde degeneration and retrograde changes after axonotomy. Exp. Neurol. 38:157–169.PubMedGoogle Scholar
  10. 10.
    Wine, J. J. 1973. Invertebrate synapse: long-term maintenance of post-synaptic morphology following denervation. Exp. Neurol. 41:649–660.PubMedGoogle Scholar
  11. 11.
    Nordlander, R., and Singer, M. 1973. Degeneration and regeneration of severed crayfish sensory fibers: an ultrastructural study. J. Comp. Neurol. 152:175–192.PubMedGoogle Scholar
  12. 12.
    Burdon, R. H. 1986. Heat shock and the heat shock proteins. Biochem. J. 240:313–324.PubMedGoogle Scholar
  13. 13.
    Flynn, G. C., Chappell, T. G., and Rothman, J. E. 1989. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245:385–390.PubMedGoogle Scholar
  14. 14.
    Lindquist, S., and Craig, E. A. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631–677.PubMedGoogle Scholar
  15. 15.
    Schlesinger, M. J. 1986. Heat shock proteins: the search for functions. J. Cell Biol. 103:321–325.PubMedGoogle Scholar
  16. 16.
    Subjeck, J. R., and Shyy, T. T. 1986. Stress protein systems of mammalian cells. Am. J. Physiol. 250:C1-C17.PubMedGoogle Scholar
  17. 17.
    Welch, W. J., Mizzen, L. A., and Arrigo, A.-P. 1989. Structure and function of mammalian stress proteins, Pages 187–202, in Pardue, M. L., Feramisco, J. R., and Lindquist, S. (eds) UCLA Symp. Molec. Cell Biol., Vol. 96, Stress-Induced Proteins. Alan R. Liss, New York.Google Scholar
  18. 18.
    Barbe, M. F., Tytell, M., Gower, D. J., and Welch, W. J. 1988. Hyperthermia protects against light damage in the rat retina. Science 241:1817–1820.PubMedGoogle Scholar
  19. 19.
    Chopp, M., Chen, H., Ho, K.-L., Dereski, M. O., Brown, E., Hetzel, F. W., and Welch, K. M. A. 1989. Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurol. 39:1396–1398.Google Scholar
  20. 20.
    Finley, D., Ozlaynak, E., and Varshavsky, A. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046.PubMedGoogle Scholar
  21. 21.
    Johnston, R. N., and Kucey, B. L. 1988. Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242:1551–1554.PubMedGoogle Scholar
  22. 22.
    Loomis, W. F., and Wheeler, S. A. 1982. Chromatin-associated heat shock proteins of Dictyostelium. Dev. Biol. 90:412–418.PubMedGoogle Scholar
  23. 23.
    Pelham, H. R. B. 1984. Hsp 70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J. 3:3095–3100.PubMedGoogle Scholar
  24. 24.
    Riabowol, K. T., Mizzen, L. A., and Welch, W. J. 1988. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp 70. Science 242:433–436.PubMedGoogle Scholar
  25. 25.
    Sanchez, Y., and Lindquist, S. L. 1990. Hsp 104 required for induced thermotolerance. Science 248:1112–1115.PubMedGoogle Scholar
  26. 26.
    Tytell, M., Greenberg, S. G., and Lasek, R. J. 1986. Heat shock-like protein is transferred from glia to axon. Brain Res. 363:161–164.PubMedGoogle Scholar
  27. 27.
    Meyer, M. R., and Bittner, G. D. 1978. Biochemical studies of trophic dependencies in crayfish giant axons. Brain Res. 143:213–232.PubMedGoogle Scholar
  28. 28.
    Moehlenbruck, J. W., Zeagler, J. W., Seshan, K. R., Sheller, R. A., and Bittner, G. D. 1986. Mechanisms for long-term survival of enucleated axons. I. Intercellular protein transfer. Trans. Soc. Neurosci. 12:1151.Google Scholar
  29. 29.
    Hakimzadeh, R., and Bradley, B. P. 1990. The heat shock response in the copepod Eurytemora affinis (Poppe). J. Therm. Biol. 15:67–78.Google Scholar
  30. 30.
    McLennan, A. G., and Miller, D. 1990. A biological role for the heat shock response in crustaceans. J. Therm. Biol. 15:61–66.Google Scholar
  31. 31.
    Stone, G. C. and Dougher, M. M. 1988. Heat stress induces changes in protein synthesis and fast axonal transport in bullfrog sensory neurons. J. Neurochem. 51:960–966.PubMedGoogle Scholar
  32. 32.
    Grossfeld, R. M., Klinge, M. W., Lieberman, E. M., and Stewart, L. C. 1988. Axon-glia transfer of a protein and a carbohydrate. Glia 1:292–300.PubMedGoogle Scholar
  33. 33.
    Mizzen, L. A., and Welch, W. J. 1988. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J. Cell Biol. 106:1105–1116.PubMedGoogle Scholar
  34. 34.
    Hames, B. D., and Rickwood, D. (eds.) 1981. Gel Electrophoresis of Proteins. IRL Press, Oxford.Google Scholar
  35. 35.
    Mans, R. J., and Novelli, G. D. 1961. Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disk method. Arch. Biochem. Biophys. 94:48–53.Google Scholar
  36. 36.
    Chomczynski, P., and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.PubMedGoogle Scholar
  37. 37.
    Nishimura, R. N., Dwyer, B. E., Clegg, K., Cole, R., and de Vellis, J. 1991. Comparison of the heat shock response in cultured cortical neurons and astrocytes. Mol. Br. Res. 9:39–45.Google Scholar
  38. 38.
    Allen, J. M., Sasek, C. A., Martin, J. B., and Heinrich, G. 1987. Use of complementary125I-labeled RNA for single cell resolution by in situ hybridization. BioTechniques 5:774–777.Google Scholar
  39. 39.
    Harper, M. E., and Marselle, L. M. 1987. RNA detection and localization in cells and tissue sections by in situ hybridization of 35S-labeled RNA probes Pages 539–551, in Gottesman, M. M. (ed.) Meth. Enzymol., Vol. 151. Academic Press, NY.Google Scholar
  40. 40.
    Nishimura, R. N., Dwyer, B. E., Welch, W., Cole, R., de Vellis, J., and Liotta, K. 1988. The induction of the major heat-stress protein in purified rat glial cells. J. Neurosci. Res. 20:12–18.PubMedGoogle Scholar
  41. 41.
    Brown, I. R., and Rush, S. J. 1984. Induction of a ‘stress’ protein in intact mammalian organs after the intravenous administration of sodium arsenite. Biochem. Biophys. Res. Commun. 120:150–155.PubMedGoogle Scholar
  42. 42.
    Brown, I. R., Lowe, D. G., and Moran, L. A. 1985. Expression of heat shock genes in fetal and maternal rabbit brain. Neurochem. Res. 10:1277–1284.Google Scholar
  43. 43.
    Gower, D. J., Hollman, C., Lee, K. S., and Tytell, M. 1989. Spinal cord injury and the stress protein response. J. Neurosurg. 70:605–611.PubMedGoogle Scholar
  44. 44.
    Nowak, T. S. Jr. 1985. Synthesis of a stress protein following transient ischemia in the gerbil. J. Neurochem. 45:1635–1641.PubMedGoogle Scholar
  45. 45.
    Nowak, T. S. Jr., Bond, U., and Schlesinger, M. J. 1990. Heat shock RNA levels in brain and other tissues after hyperthermia and transient ischemia. J. Neurochem. 54:451–458.PubMedGoogle Scholar
  46. 46.
    Gonzalez, M. F., Shiraishi, K., Hisanaga, K., Sagar, S. M., Mandabach, M., and Sharp, F. R. 1989. Heat shock proteins as markers of neural injury. Mol. Brain Res. 6:93–100.PubMedGoogle Scholar
  47. 47.
    Brown, I. R., Rush, S., and Ivy, G. O. 1989. Induction of a heat shock gene at the site of tissue injury in the rat brain. Neuron 2:1559–1564.PubMedGoogle Scholar
  48. 48.
    Magnusson, K., and Wieloch, T. 1989. Impairment of protein ubiquitination may cause delayed neuronal death. Neurosci. Lett. 96:264–270.PubMedGoogle Scholar
  49. 49.
    Mansing, T. E., and Brown, I. R. 1989. Cellular localization of heat shock gene expression in rabbit cerebellum by in situ hybridization with plastic-embedded tissue. Neurochem. Res. 14:725–731.PubMedGoogle Scholar
  50. 50.
    Vass, K., Welch, W. J., and Nowak, T. S. Jr. 1988. Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol. 77:128–135.PubMedGoogle Scholar
  51. 51.
    Atwood, H. L., Lang, F., and Morin, W. A. 1972. Synaptic vesicles: selective depletion in crayfish excitatory and inhibitory axons. Science 176:1353–1355.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Julie M. Rochelle
    • 1
  • Robert M. Grossfeld
    • 1
  • Douglas L. Bunting
    • 1
  • Michael Tytell
    • 2
  • Barney E. Dwyer
    • 3
  • Zheng-yu Xue
    • 1
  1. 1.Zoology Dept.North Carolina State UniversityRaleigh
  2. 2.Neurobiology and Anatomy Dept.Bowman Gray School of MedicineWinston-Salem
  3. 3.Epilepsy Research Lab (111N1)VA Medical CenterSepulveda

Personalised recommendations