Skip to main content
Log in

Effects of acute and subacute cocaine administration on the CNS dopaminergic system in Wistar-Kyoto and spontaneously hypertensive rats: I. Levels of dopamine and metabolites

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galloway, M. P. 1988. Neurochemical interactions of cocaine with dopaminergic systems. TIPS. 9:451–454.

    Google Scholar 

  2. Goeders, N. E., and Smith, J. E. 1983. Cortical dopaminergic involvement in cocaine reinforcement. Sci. 221:773–775.

    Google Scholar 

  3. Woolverton, W. L. 1986. Effects of a D-1 and a D-2 dopamine antagonist on the self-administration of cocaine and piribedil by rhesus monkeys. Pharmacol. Biochem. Behav. 24:531–535.

    Google Scholar 

  4. Zahniser, N. R., Peris, J., Dwoskin, L. P., Curella, P., Yasuda, R. P., O'Keefe, L., and Boyson, S. J. 1988. Sensitization to cocaine in the nigrostriatal dopamine system. NIDA Monograph, 88:55–77.

    Google Scholar 

  5. Ritz, M. C., Lamb, R. J., Goldberg, S. R., and Kuhar, M. J. 1988. Cocaine self-administration appears to be mediated by dopamine uptake inhibition. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 12:233–239.

    Google Scholar 

  6. Taylor, D., and Ho, B. T. 1978. Comparison of inhibition of monoamine uptake by cocaine, methylphenidate and amphetamine. Res. Commun. Chem. Pathol. Pharamcol. 21:67–75.

    Google Scholar 

  7. Trendelenburg, U., and Graefe, K. H. 1975. Supersensitivity to catecholamines after impairment of extraneuronal uptake or catechol-O-methyltransferase. Fed. Proc. 34:1971.

    Google Scholar 

  8. Di Giulio, A. M., Groppetti, A., Cattabeni, F., Galli, C. L., Maggi, A., Algeri, S., and Ponzio, F. 1978. Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurons. Eur. J. Pharmacol. 52:201–207.

    Google Scholar 

  9. Trulson, M. E., Babb, S., Joe, J. C., and Raese, J. D. 1986. Chronic cocaine administration depletes tyrosine hydroxylase immunoreactivity in the rat brain nigral striatal system: Quantitative light microscopic studies. Exp. Neurol. 94:744–756.

    Google Scholar 

  10. Dackis, C. A., and Gold, M. S. 1985. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci. Biobehav. Rev. 9:469–477.

    Google Scholar 

  11. Taylor, D., and Ho, B. T. 1977. Neurochemical effects of cocaine following acute and repeated injection. J. Neurosci. Res., 3:95–101.

    Google Scholar 

  12. Trulson, M. E., and Ulissey, M. J. 1987. Chronic cocaine administration decreases dopamine synthesis rate and increase (3H)spiroperidol binding in rat brain. Brain Res. Bulletin. 19:35–38.

    Google Scholar 

  13. Ungrestedt, U. 1971. Stereotaxic mapping of the monoamine pathway in the rat brain. Acta Physiol. Scand. (Suppl 367) 83:1–48.

    Google Scholar 

  14. Lindvall, O., Bjorklund, A., and Divac, I. 1977. Organization of mesencephalic dopamine neurons projecting to neocortex and septum, vol. 16, page 36–46, in Costa, E. and Gessa, G. L. (eds), Advances in Biochemical Psychopharmacology, Raven Press, New York.

    Google Scholar 

  15. Ashen, I. M., and Aghajanian, G. K. 1974. 6-Hydroxydopamine lesion of olfactory tubercles and caudate nuclei: effect on amphetamine-induced stereotyped behaviour in rats. Brain Res. 82:1–12.

    Google Scholar 

  16. Van Rossum, J. M., Broekkamp, C. L. E., and Pijnenburg, A. J. J. 1977. Behavioural correlates of dopaminergic function in the nucleus accumbens, Vol. 16, pages 201–207, in Costa, E., and Gessa, G. L., (eds), Advances in Biochemical Psychopharmacology, Raven Press, New York.

    Google Scholar 

  17. Bartholini, G. 1976. Differential effect of neuroleptid drugs on dopamine turnover in the extrapyramidal and limbic system. J. Pharm. Pharmacol. 28:429–433.

    Google Scholar 

  18. Scatton, B., Bischoff, S., Dedek, J., and Korf, J. 1977. Regional effects of neuroleptics on dopamine metabolism and dopamine-sensitive adenylate cyclase activity. Eur. J. Pharmacol. 46:363–369.

    Google Scholar 

  19. Missale, C., Castelletti, L., Govoni, S., Spano, P. F., Trabucchi, M., and Hanbauer, I. 1985. Dopamine uptake is differentially regulated in rat striatum and nucleus accumbens. J. Neurochem. 45 (1):51–56.

    Google Scholar 

  20. Goeders, N. E., and Kuhar, M. J. 1987. Chronic cocaine adminstration induces opposite changes in dopamine receptors in the striatum and accumbens. Alcohol and Drug Res. 7:207–216.

    Google Scholar 

  21. Fuller, R. W., Luecke-Hemrick, S. K., Wong, D. T., Pearson, D., Threlkeld, P. G., and Hynes, M. D. 1983. Altered behavioral response to a D2 agonist, LY141865, in spontaneously hypertensive rats exhibiting biochemical and endocrine responses similar to those in normotensive rats. J. Pharmacol. Exp. Ther. 227(2):354–359.

    Google Scholar 

  22. Wocial, B., Chodakowska, J., Zukowska, G. Z., Rutczynski, M., and Boratynski, W. 1977. Tissue catecholamine concentrations in spontaneously hypertensive rats. Acta. Physiol. Pol. 28(4):303–312.

    Google Scholar 

  23. Myers, M. M., Whittemore, S. R., and Hendley, E. D. 1981. Changes in catecholamine neuronal uptake and receptor binding in the brains of spontaneously hypertensive rats. Brain Res. 220(2):325–338.

    Google Scholar 

  24. Kawabe, H., Konodo, K., and Saruta, T. 1983. Effect of the intracerebroventricular injection of dopamine on blood pressure in the spontaneously hypertensive rat. Clin. Exp. Hypertens. 5(10):1703–1716.

    Google Scholar 

  25. Lim, D. K., Ito, Y., Hoskins, B., Rockhold, R. W., and Ho, I. K. 1989. Comparative studies of muscarinic and dopamine receptors in three strains of rat. Eur. J. Pharmacol. 165:279–287.

    Google Scholar 

  26. Howes, L. G., Rowe, P. R., Summers, R. J., and Louis, W. J. 1984. Age related changes of catecholamines and their metabolites in central nervous system regions of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Clin. Expt. Theory and Practice. A6(12):2263–2277.

    Google Scholar 

  27. Tuomisto, L., Yamatodani, A., Dietl, H., Waldmann, U., and Philippu, A. 1983. In vivo release of endogenous catecholamines, histamine and GABA in the hypothlamus of Wistar-Kyoto and spontaneously hypertensive rats, Naunyn-Schmiedeberg's aRch. Pharmacol. 323:183–187.

    Google Scholar 

  28. Mayer, G. S., and Shoup, R. E. 1983. Simultaneous multiple electrode liquid chromatographic-electrochemical assay for catecholamines indoleamines and metabolites in brain tissue. J. Chromatography, 255:533–544.

    Google Scholar 

  29. Glowinski, J., and Iversen, L. L. 1966. Regional studies of catecholamines in the rat brain-I. The disposition of3H-norepinephrine,3H-dopamine and3H-DOPA in varicus regions of the rat. J. Neurochem. 13:655–669.

    Google Scholar 

  30. Palkovits, M., and Brownstein, J. M. 1988. Maps and guide to Microdissection of Rat Brain. Page 96. Elsevier Sci. Publishers Co. New York.

    Google Scholar 

  31. Fuller, R. W., Leucke-Hemrick, S. K., Wong, D. T., Pearson, D., Threlkeld, P. G., and Hynes, M. D. 1983. Altered behavioral response to a D2 agonist, LY141865, in spontaneously hypertensive rats exhibiting biochemical and endocrine responses similar to those in normotensive rats. J. Pharmacol. Exp. Ther. 227(2):354–359.

    Google Scholar 

  32. Versteeg, D. G., Palkovits, M., Van Der Gugten, J., Wijnen H. J. L. M., Smeets, G. W. M., and De Jong, W. 1977. The spontaneously hypertensive rat: Catecholamine levels in individual regions. Prog. Brain Res. 47:111–116.

    Google Scholar 

  33. Kurtz, T. W., and Morris, Jr., R. C. 1987. Biological variability in Wistar-Kyoto rats: Implications for research with the spontaneously hyperetensive rat. Hypertension 10:127–131.

    Google Scholar 

  34. Pradhan, S., Roy, S. N., and Pradhan, S. N. 1978. Correlation of behavioral and neurochemical effects of acute administration of cocaine in rats. Life Sci. 22:1737–1744.

    Google Scholar 

  35. Peris, J., and Zahniser, N. R. 1987. One injection of cocaine produces a long-lasting increase in (3H)-dopamine release. Pharmacol. Biochem. Behav. 27:533–535.

    Google Scholar 

  36. Westerink, B. H. C., and Spaan, S. J. 1982. Estimation of the turnover of 3-methoxytyramine in the rat striatum by HPLC with electrochemical detection: Implications for the sequence in the cerebral metabolism of dopamine. J. Neurochem. 38:342–347.

    Google Scholar 

  37. Cooper, J. R., Bloom, F. E., and Roth, R. H. 1986. Catecholamine II: CNS Aspects. pages 273–295, in Cooper, J. R., Bloom, F. E., and Roth, R. H. (eds), The Biochemical Basis of Neuropharmacology, Oxford Univ. Press, New York.

    Google Scholar 

  38. Bowers, Jr. M. B., and Hoffman, Jr. F. J. 1986. Regional brain homovanillic acid following tetrahydrocannabinol and cocaine. Brain Res. 366:405–407.

    Google Scholar 

  39. Fekete, M., and Borsy, J. 1971. Chlorpromazine-cocaine antagonism: Its relation to changes of dopamine metabolism in the brain. Eur. J. Pharmacol. 16:171–175.

    Google Scholar 

  40. Heikkila, R. E., Cabbat, F. S., Manzino, L., and Duvoisin, R. C. 1979. Rotational behaviour induced by cocaine analogs in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra: dependence upon dopamine uptake inhibition. J. Pharmacol. Exp. Ther. 211:189–194.

    Google Scholar 

  41. Hadfield, M. G., and Nugent, E. A. 1983. Cocaine: Comparative effect on dopamine uptake in extrapyramidal and limbic systems. Biochem. Pharmacol. 32:744–746.

    Google Scholar 

  42. Taylor, D. L., Ho, B. T., and Fagan, J. D. 1979. Increased dopamine receptor binding in rat brain by repeated cocaine injections. Comm. in Psychopharmacol. 3:137–142.

    Google Scholar 

  43. Lim, D. K., Yu, Z. J., Hoskins, B., Rockhold, R. W., and Ho, I. K. 1989. Efects of acute and subacute administration of cocaine on dopamine receptors in Wistar-Kyoto and spontaneously hypertensive rats. Neurochem. Res. (Submitted for publication)

  44. Sharman, D. F. 1981. The turnover of catecholamine. Pages 20–58, in Pycock, C. J., and Taberner, P., (eds.), Central Neurotransmitter Turnover, London: Croom Helm.

    Google Scholar 

  45. Hornykievicz, O. 1972. Dopamine and its physiological significance in brain function. Vol. 6, pages 367–415, in Bourne, G. H. (ed.), The structure and function of nervous tissue, Academic Press, New York and London.

    Google Scholar 

  46. Patrick, R. L., and Barchas, J. D. 1977. Potentiation by cocaine of the stimulus-induced increase in dopamine synthesis in rat brain striatal synaptosomes. Neuropharmacol. 16:327–332.

    Google Scholar 

  47. Reith, M. E. A., Sershen, H., and Lajtha, A. 1986. Binding sites for (3H)cocaine in mouse striatum and cerebral cortex have different dissociation kinetics. J. Neurochem. 46(1):309–312.

    Google Scholar 

  48. Calligaro, D. O., and Eldefrawi, M. E. 1987. Central and peripheralcocaine receptors. J. Pharmacol. Exp. Ther. 243(1):61–68.

    Google Scholar 

  49. Ruth, J. A., Ullman, E. A., and Collins, A. C. 1988. An analysis of cocaine effects on locomotor activities and heart rate in four inbred mouse strains. Pharmacol. Biochem. Behav. 29:157–162.

    Google Scholar 

  50. Ishizuka, Y., Rockhold, R. W., Kirchner, K., Hoskins, B., and Ho, I. K. 1989. Differential sensitivity to cocaine in spontaneously hypertensive and Wistar-Kyoto rats. Life Sci. 45:223–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z.J., Lim, D.K., Hoskins, B. et al. Effects of acute and subacute cocaine administration on the CNS dopaminergic system in Wistar-Kyoto and spontaneously hypertensive rats: I. Levels of dopamine and metabolites. Neurochem Res 15, 613–619 (1990). https://doi.org/10.1007/BF00973752

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973752

Key Words

Navigation