Skip to main content
Log in

Neurochemical correlates of cyanide-induced hypoxic neuronal damage in vitro

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuronal cortical cell cultures obtained from fetal mice were subjected to an hypoxic insult produced by sodium cyanide (1 mM) for 24 h. Neurochemical assays were performed 13–14 days after plating on intact cells in situ to determine if there was a specific pattern of cellular dysfunction in addition to morphologic change. Ro5-4864-displaceable benzodiazepine (BDZ) binding and high-affinity [3H]β-alanine uptake were not reduced when compared to control values. However, specific and clonazepam-displaceable BDZ binding (81±4% and 50±9% of control values, respectively), high-affinity [3H]GABA uptake (75±2%), and choline acetyltransferase activity (82±2%) were significantly lower. When the data were expressed in terms of protein content, high-affinity [3H]β-alanine uptake was significantlyincreased in cyanide-exposed and magnesium-treated cultures (123±5% and 117±3%, respectively) as was R05-4864-displaceable BDZ binding (152±14%), consistent with stimulation of nonneuronal BDZ binding and increased glial neurotransmitter uptake. Moreover, pretreatment of the cultures with magnesium effectively prevented both the morphologic and neurochemical evidence of hypoxic injury. These data lend further support to the notion that the release of excitatory neurotransmitters may mediate neurotoxicity in developing brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myers, R. E. 1979. Lactic acid accumulation as a cause of brain edema and cerebral necrosis resulting from oxygen deprivation. Pages 85–114,in, Korobkin, R., and Guilleminault, D. (eds.) Advances in Perinatal Neurology, New York: Spectrum.

    Google Scholar 

  2. Raichle, M. 1983. The pathophysiology of brain ischemia. Ann. Neurol. 13:2–10.

    PubMed  Google Scholar 

  3. Rehncrona, S., Rosen, I., and Siesjo, B. 1980. Excessive cellular acidosis: an important mechanism of neuronal damage in the brain. Act Physiol. Scand. 110:435–437.

    Google Scholar 

  4. Siesjo, B. 1981. Cell damage in the brain. A speculative synthesis. J. Cereb. Blood Flow Metab. 1:155–185.

    PubMed  Google Scholar 

  5. Choi, D. W. 1985. Glutamate neurotoxicity in cortical cell cultures is calcium dependent. Neurosci. Lett. 58:293–297.

    PubMed  Google Scholar 

  6. Johnston, M. V., and Silverstein, F. S. 1986. New insights into mechanisms of neuronal damage in developing brain. Pediat. Neurosci. 12:87–89.

    Google Scholar 

  7. Rothman, S. M. 1983. Synaptic activity mediates death of hypoxic neurons. Science 220:536–537.

    PubMed  Google Scholar 

  8. Rothman, S. 1984. Synaptic release of excitatory amino acid neurotransmitters mediates anoxic neuronal death. J. Neurosci. 4:1884–1891.

    PubMed  Google Scholar 

  9. Rothman, S. M., and Olney, J. W. 1986. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19:105–111.

    PubMed  Google Scholar 

  10. Silverstein, F. S., Buchanan, K., and Johnston, M. V. 1986. Perinatal hypoxia-ischemia disrupts striatal high-affinity [3H]glutamate uptake into synaptosomes. J. Neurochem. 47:1614–1619.

    PubMed  Google Scholar 

  11. Weiss, J., Goldberg, M. P., and Choi, D. W. 1986. Ketamine protects cultured neocortical neurons from hypoxic injury. Brain Res. 380:186–190.

    PubMed  Google Scholar 

  12. Swaiman, K. F., Neale, E. A., Fitzgerald, S. C., and Nelson, P. G. 1982. A method for large-scale production of mouse brain cortical cultures. Dev. Brain Res. 3:361–369.

    Google Scholar 

  13. sher, P. K., Schrier, B. K., and Van Putten, D. 1982. An in situ assay for determination of benzodiazepine binding. Dev. Neurosci. 5:271–277.

    PubMed  Google Scholar 

  14. Schon, F., and Kelly, J. S. 1975. Selective uptake of [3H]β-alanine by glia: association with the glial uptake system for GABA. Brain Res. 86:243–257.

    PubMed  Google Scholar 

  15. Schrier, B. K., Neale, E. A., Sher, P. K., Brenneman, D. E., and Nelson, P. G. 1981. GABA uptake and other cell markers distinguish cell types in drug toxicity studies with dispersed cultures of developing CNS cells. Pages 268–279,in Okada, Y., and Roberts, E. (eds.), Problems in GABA Research, Amsterdam: Excerpta Medica, Elsevier North-Holland.

    Google Scholar 

  16. Godfrey, E. W., Schrier, B. K., and Nelson, P. G. 1980. Source and target cell specificities of a conditioned medium factor that increases choline acetyltransferase activity in cultured spinal cord cells. Dev. Biol. 77:403–418.

    PubMed  Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  18. Jones, M. G., Bicklar, D., Wilson, M. T., Brunori, M., Colosimo, A., and Sarti, M. P. 1984. A re-examination of the reactions of cyanide with cytochrome c oxidase. 1984. Biochem. J. 220:57–66.

    PubMed  Google Scholar 

  19. Gallager, D. W., Mallorga, P., Oertel, W., Henneberry, R., and Tallman, J. 1981. [3H]diazepam binding in mammalian central nervous system: a pharmacological consideration. J. Neurosci. 1:218–225.

    PubMed  Google Scholar 

  20. Sher, P. K. 1982. Development of the benzodiazepine receptor in cultures of fetal mouse cerebral cortex mimics its development in vivo. Dev. Neurosci. 5:263–270.

    PubMed  Google Scholar 

  21. Sher, P. K., Neale, E. A., and Machen, V. L., 1986. Autoradiographic localization of the benzodiazepine receptor in cultures of fetal mouse cerebral cortex. J. Neurochem. 46:899–904.

    PubMed  Google Scholar 

  22. McCarthy, K. D., and Harden, T. K. 1981. Identification of two benzodiazepine binding sites on cells cultures from rat cerebral cortex. J. Pharmacol exp. Ther. 216:183–191.

    PubMed  Google Scholar 

  23. Talwar, D., and Sher, P. K. Development of the benzodiazepine receptor in murine glial cells. Dev. Neurosci. In press.

  24. Stewart, R. M., and Rosenberg, R. N. 1979. Physiology of glia: glial-neuronal interactions. Int. Rev. Neurobiol. 21:275–309.

    PubMed  Google Scholar 

  25. Rice, J. E., III, Vanucci, R. C., and Brierly, J. B. 1981. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9:131–141.

    PubMed  Google Scholar 

  26. Hertz, L. 1981. Features of astrocyte function apparently involved in the response of the central nervous system to ischemia-hypoxia. J. Cer. Blood Flow Metab. 1:143–154.

    Google Scholar 

  27. Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N. H. 1984. Elevation of extracellular concentrations of glutamate and aspartate during transient cerebral ischemia. J. Neurochem. 43:1369–1374.

    PubMed  Google Scholar 

  28. Hauptman, M., Nelson, D., Wilson, D. F., and Erecinska, M. 1984. Neurotransmitter aminoacids in the CNS. II. Some changes in amino acid levels in rat brain synaptosomes during and after in vitro anoxia and simulated ischemia. Brain Res. 304:23–35.

    PubMed  Google Scholar 

  29. Weinstein, L. A., and Landin, D. M. D. 1985. Anoxia does not alter membrane structure in cultured astrocytes. Abst. Soc. Neurosci. 11:777.

    Google Scholar 

  30. Coyle, J. T., Bird, S. J., Evans, R. H., Gulley, R. L., Nadler, J. V., Nicklas, W. J., and Olney, J. W. 1981. Excitatory amino acid neurotoxins: selectivity, specificity, and mechanism of action. Neurosci. Res. Prog. Bull. 19:329–427.

    Google Scholar 

  31. Collins, R. L., and Olney, J. W. 1982. Focal cortical seizures cause distant thalamic lesions. Science 218:177–179.

    PubMed  Google Scholar 

  32. Wieloch, T. 1985. Hypoglycemia-induced neuronal damage prevented by an N-methyl-d-aspartate antagonist. Science 230:681–683.

    PubMed  Google Scholar 

  33. Meldrum, B. 1985. Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clin. Sci. 68:113–122.

    PubMed  Google Scholar 

  34. Aitken, P. G., and Schiff, S. J. 1986. Barbiturate protection against hypoxic neuronal damage in vitro. J. Neurosurg. 65:230–232.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sher, P.K. Neurochemical correlates of cyanide-induced hypoxic neuronal damage in vitro. Neurochem Res 13, 159–163 (1988). https://doi.org/10.1007/BF00973328

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973328

Key Words

Navigation