Skip to main content
Log in

Soman toxication in hypoxia acclimated rats: Alterations in brain neuronal RNA and survival

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Effects of prior hypoxia acclimation (14-day at 380 mm Hg) on soman (pinacolyl methylphosphonofluoridate) induced brain neuronal RNA and acetylcholinesterase (AChE) depletion and lethality were monitored in rats following their return to ambient oxygenation. Quantitative cytochemical techniques were used to measure RNA and AChE changes in individual cerebrocortical (Layer III) and striatal (caudate plus putamen) neurons. In ambient PO 2 controls, soman eventuated in a moderate diminution of neuronal RNA in both brain regions and severe, dosedependent suppression of AChE activity. Hypoxia acclimation per se induced RNA alterations as manifested in cortical RNA depletion and increased variability of striatal neuron RNA contents. In hypoxia acclimated rats, the extent of neuronal RNA depletion following soman injection was attenuated in both brain regions, yet there were no discernible differences in saline control AChE levels or in the extent of soman-induced AChE inhibition in ambient control versus hypoxia acclimated treatment groups. Hypoxia acclimated rats, however, were found to be even more susceptible to lethal actions of soman as assessed using 24- and 48-hour survival following a three-point treatment regimen. These data indicate that while compensatory systemic and central metabolic adjustments associated with 14d acclimation to reduced oxygen availability may retard soman-induced neuronal RNA depletion, resistance to lethal or near-lethal soman exposure is not enhanced. It is postulated that hypoxia acclimation is associated with complex adaptive and maladaptive neurophysiological alterations influencing CNS responsiveness to soman toxication, and that detrimental consequences exceed protection afforded by metabolic adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, G. K., Yamamura, H. I., andO'Leary, J. F. 1976. Recovery of central respiratory function following anticholinesterase intoxication. Eur. J. Pharmacol. 38:101–112.

    Google Scholar 

  2. Alberghina, M., Viola, M., andGiuffrida, A. M. 1982. Changes in enzyme activities of glycerolipid metabolism of guinea-pig cerebral hemispheres during experimental hypoxia. J. Neurosci. Res. 7:147–154.

    Google Scholar 

  3. Anthony, A., Bocan, T., Doebler, J., Penman, J. andHollis, T. M. 1981. Ribonucleic acid changes in medial cells in Evans blue positive regions of the dog aorta. Exp. Mol. Pathol. 35:347–358.

    Google Scholar 

  4. Anthony, A., Doebler, J. A., Bocan, T. M. A., andShih, T.-M. 1983. Scanning integrating microdensitometric analyses of brain neuronal RNA and acetylcholinestease in acute soman treated rats. Cell Biochem. Funct. 1:30–36.

    Google Scholar 

  5. Anthony, A., andKreider, J. 1961. Blood volume changes in rodents exposed to simulated high altitude. Am. J. Physiol. 200:523–526.

    Google Scholar 

  6. Benzi, G., Arrigoni, E., Pastoris, O., Villa, R. F., Dossena, M., Agnoli, A., andGiuffrida, A. M. 1982. Drug action on the metabolic changes induced by acute hypoxia on synaptosomes from the cerebral cortex. J. Cereb. Blood Flow Metab. 2:229–239.

    Google Scholar 

  7. Benzi, G., Pastoris, O., andDossena, M. 1982. Relationships between gamma-aminobutyrate and succinate cycles during and after cerebral ischemia. J. Neurosci. Res. 7:193–201.

    Google Scholar 

  8. Bignami, G., Rosic, N., Michalek, H., Milosevic, M., andGhatti, G. L. 1975. Behavioral toxicity of anticholinesterase agents: Methodological, neurochemical, and neuropsychological aspects. Pages 155–215,in Weiss, B., andLaties, V. G. (eds.), Behavioral Toxicology, Plenum Press, New York.

    Google Scholar 

  9. Bartholini, A., Bartholini, R., andDomino, E. F. 1973. Effects of physostigmine on brain acetylcholine content and release. Neuropharmacology 12:15–25.

    Google Scholar 

  10. Blayo, M. C., Marc-Vergnes, J. P., andPocidalo, J. J. 1973. pH,\(P_{CO_2 } \), and\(P_{O_2 } \) of cisternal cerebrospinal fluid in high altitude natives. Resp. Physiol. 19:298–311.

    Google Scholar 

  11. Brimblecombe, R. W. 1974. Drug Actions on Cholinergic Systems, Page 1–227, University Park Press, Baltimore.

    Google Scholar 

  12. Cohen, P. J., Alexander, S. C., Smith, T. C., Reivich, M., andWollman, H. 1967. Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. Appl. Physiol. 23:183–189.

    Google Scholar 

  13. Davis, J. N. 1975. Adaptation of brain monoamine synthesis to hypoxia in the rat. J. Appl. Phsiol. 39:215–220.

    Google Scholar 

  14. De Candole, C. A., Douglas, W. W., Evans, C. L., Holmes, R., Spencer, K. E. V. Torrence, R. W., andWilson, K. M. 1953. The failure of respiration in death by anticholinesterase poisoning. Brit. J. Pharmacol. 8:466–475.

    Google Scholar 

  15. Doebler, J. A., Bocan, T. M. A., Moore, R. A., Shih, T.-M., andAnthony, A. 1983. Brain neuronal RNA metabolism during acute soman toxication: Effects of antidotal pretreatments. Neurochem. Res. 8:997–1011.

    Google Scholar 

  16. Fonnum, F., andSterri, S. H. 1981. Factors modifying the toxicity of organophosphorous compounds including soman and sarin. Fund. Appl. Toxicol. 1:143–147.

    Google Scholar 

  17. Gibson, G. E. andBlass, J. P. 1976. Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J. Neurochem. 27:37–42.

    Google Scholar 

  18. Gibson, G. E., andDuffy, T. E. 1981. Impaired synthesis of acetylcholine by mild hypoxic hypoxia or nitrous oxide. J. Neurochem. 36:28–33.

    Google Scholar 

  19. Groff, W. A., Kaminskis, A., andEllin, R. I. 1976. Interconversion of cholinesterase enzyme activity units by the manual ΔpH method and a recommended automated method. Clin. Toxicol. 9:353–358.

    Google Scholar 

  20. Heath, D. F. 1961. Organophosphorous Poisons. Page 1–331 Pergamon Press, New York.

    Google Scholar 

  21. Jovic, R., Bachalard, H. S., Clark, A. G., andNicholas, P. C. 1971. Effects of soman and DFP in vivo and in vitro on cerebral metabolism in the rat. Biochem. Pharmacol. 20:519–527.

    Google Scholar 

  22. Jovic, R., andMilosevic, M. 1970. Inhibitory actions of soman and some cholinolytics on the uptake of oxygen in the brain of rats and mice. Eur. J. Pharmacol. 19:304–310.

    Google Scholar 

  23. Karnovsky, M. J., andRoots, L. 1964. A “direct coloring” thiocholine method for cholinesterases. J. Histochem. 12:219–221.

    Google Scholar 

  24. Klausen, K. 1966. Cardiac output in man in rest and work during and after acclimatization to 3800 m. J. Appl. Physiol. 21:609–616.

    Google Scholar 

  25. Lipp, J. A., andDola, T. J. 1978. Effect of atropine upon the cerebrovascular system during soman-induced respiratory despression. Arch. Int. Pharmacodyn. 235:211–218.

    Google Scholar 

  26. Mabe, H., Blomqvist, P., andSiesjo, B. K. 1983. Intracellular pH in the brain following transient ischemia. J. Cereb. Blood Flow Metab. 3:109–114.

    Google Scholar 

  27. Maher, J. T., Goodman, A. L., Bowers, W. D., Hartley, L. H., andAngelakos, E. T. 1972. Myocardial function and ultrastructure in chronically hypoxic rats. Am. J. Physiol. 223:1029–1033.

    Google Scholar 

  28. Meeter, E., andWolthuis, O. L. 1968. The spontaneous recovery of respiration and neuromuscular transmission in the rat after anticholinesterase poisoning. Eur. J. Pharmacol. 2:377–386.

    Google Scholar 

  29. Nelson, S. R., Doull, J., Tockman, B. A., Cristiano, P. J., andSamson, R. E. 1978. Regional brain metabolism changes induced by acetylcholinesterase inhibitors. Brain Res. 157:186–190.

    Google Scholar 

  30. Ott, L. 1977. An Introduction to Statistical methods and Data Analysis. Page 1–730, Duxbury Press, North Scituate, Massachusetts.

    Google Scholar 

  31. Ou, L. C., andTenney, S. M. 1970. Properties, of mitochondria from hearts of cattle acclimatized to high altitude. Resp. Physiol. 8:151–159.

    Google Scholar 

  32. Piwonka, R. W., andBarnes, C. D. 1970. Spinal reflex activity during acute hypoxia in normal and chronic altitude-exposed cats. J. Appl. Physiol. 29:96–102.

    Google Scholar 

  33. Serra, I., Alberghina, M., Viola, M., andGiuffrida, A. M. 1981. Effect of hypoxia on nucleic acid and protein synthesis in different brain regions. Neurochem. Res. 6:595–605.

    Google Scholar 

  34. Serra, I., Alberghina, M., Viola, M., Mistretta, A., andGiuffrida, A. M. 1981. Effect of CDP-choline on the biosynthesis of nucleic acids and proteins in brain regions during hypoxia. Neurochem. Res. 6:607–618.

    Google Scholar 

  35. Shea, J. R. 1970. A method for in situ cytophotometric estimation of absolute amount of RNA using azure B. J. Histochem. Cytochem. 18:143–152.

    Google Scholar 

  36. Shimada, M. 1981. Glucose uptake in mouse brain regions under hypoxic hypoxia. Neurochem. Res. 6:993–1003.

    Google Scholar 

  37. Smialek, M., andHamberger, A. 1970. The effect of moderate hypoxia and ischemia on cytochrome oxidase activity and protein synthesis in brain mitochondria. Brain Res. 17:369–371.

    Google Scholar 

  38. Sorensen, S. C., Lassen, N. A., Severinghaus, J. W., Coudert, J., andZamora, M. P. 1974. Cerebral glucose metabolism and cerebral blood flow in high-altitude residents. J. Appl. Physiol. 37:305–310.

    Google Scholar 

  39. Taylor, P. 1980. Anticholinesterase agents. Pages 110–119,in Gilman, A. G., Goodman, L. S., andGilman, A. (eds.), The Pharmacological Basis of Therapeutics, MacMillan, New York.

    Google Scholar 

  40. Tenney, S. M., andOu, L. C. 1970. Physiological evidence for increased tissue capillarity in rats acclimatized to high altitude. Resp. Physiol. 8:137–150.

    Google Scholar 

  41. Van Liere, E. J., andStickney, J. C. 1963. Hypoxia. Pages 1–381 Univ. Chicago Press, Chicago.

    Google Scholar 

  42. Welsh, F. A., O'Conner, M. J., Marcy, V. R., Spatacco, A. J., andJohns, R. L. 1982. Factors limiting regeneration of ATP following temporary ischemia in cat brain. Stroke 13:234–242.

    Google Scholar 

  43. Wing, M. E., Woolley, D. E., andTimiras, P. S. 1967. Electrical activity of the rhinencephalon during high-altitude acclimatization. Am. J. Physiol. 212:135–141.

    Google Scholar 

  44. Wood, J. D. 1967. A possible role for gamma-aminobutyric acid in the homeostatic control of brain metabolism under conditions of hypoxia. Exp. Brain Res. 4:81–84.

    Google Scholar 

  45. Woolley, D. E., Herrero, S. M. andTimiras, P. S. 1963. CNS excitability changes during altitude acclimatization and deacclimatization in rats. Am. J. Physiol. 205:727–732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doebler, J.A., Wall, T.J., Moore, R.A. et al. Soman toxication in hypoxia acclimated rats: Alterations in brain neuronal RNA and survival. Neurochem Res 9, 1239–1252 (1984). https://doi.org/10.1007/BF00973037

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973037

Keywords

Navigation