Skip to main content
Log in

Lysophospholipase activity in rat brain subcellular fractions

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lysophospholipase activity in brain subcellular fractions was measured by the release of myristic acid from 1-myristoylglycerophosphocholine or through the formation of [32P]glycerophosphocholine from [32P]lysophosphatidylcholine. Although the lysophospholipase activity was highest in microsomes, considerable enzyme activity was also found in other subcellular membrane fractions. The pH optimum for the microsomal enzyme was around 7, whereas the synaptosomes and non-synaptic plasma membranes exhibited a pH maximum around 8. Although the enzyme did not require divalent cations for activity, divalent cations (1 mM) such as Hg2+, Cu2+, and Zn2+ inhibited potently the enzyme activity. Enzyme activity was also partially inhibited by both saturated and polyunsaturated fatty acids (25–200 μM), and the inhibition seemed to be greater in the membrane than in the cytosolic fractions. Ionic detergents such as deoxycholate and taurocholate inhibited the lysophospholipase. On the other hand, the effect of Triton X-100 was biphasic, i.e., stimulation at concentrations below 100 μg/mg protein and inhibition at higher concentrations. Addition of cholesterol (50–250 μg/ml), but not cholesteryl esters, also potently inhibited enzyme activity. The presence of active lysophospholipase(s) in brain is probably an important mechanism for preventing unnecessary accumulation of lysophospholipids which may exert a deleterious effect on the membranes because, of their detergent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, G. Y., Su, K. L., Der, O. M., and Tang, W. 1979. Enzymic regulation of arachidonate metabolism in brain membrane phosphoglycerides. Lipids 14:229–235.

    Google Scholar 

  2. Weltzien, H. U. 1979. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta 559:259–287.

    Google Scholar 

  3. Shier, W. T., Baldwin, J. H., Nilsen-Hamilton, M., Hamilton, R. T., and Thanassi, N. M. 1976. Regulation of guanylate and adenylate cyclase activities by lysolecithin. Proc. Natl. Acad. Sci. (USA) 73:1586–1590.

    Google Scholar 

  4. Van den Bosch, H. and Van den Besselaar, A. M. H. P. 1978. Intracellular formation and removal of lysophospholipids, Pages 59–75,in C. Galli and G. Porcellati (eds.) Advances in Prostaglandin and Thromboxanes Research, Raven Press, New York.

    Google Scholar 

  5. Van den Bosch, H. 1980. Intracellular phospholipases A. Biochim. Biophys. Acta 604:191–246.

    Google Scholar 

  6. De Jong, J. G. N., Van den Bosch, H., Rejken, D., and Van Deenen, L. L. M. 1974. Studies on lysophospholipases. III. The complete purification of two proteins with lysophospholipase activity from beef liver. Biochim. Biophys. Acta 369:50–63.

    Google Scholar 

  7. Van den Bosch, H., and De Jong, J. G. N. 1975. Studies on lysophospholipases. IV. The subcellular distribution of two lysolecithinhydrolyzing enzymes in beef liver. Biochim. Biophys. Acta 398:244–257.

    Google Scholar 

  8. Leibovitz-BenGershon, Z., Kobiler, I., and Gatt, S. 1972. Lysophospholipases of rat brain. J. Biol. Chem. 247:6840–6847.

    Google Scholar 

  9. Leibovitz-BenGershon, Z., and Gatt, S. 1974. Lysolecithinase of rat brain. Further analysis of the effect of substrate on the particulate and microsomal enzyme. J. Biol. Chem. 249:1525–1529.

    Google Scholar 

  10. Gross, R. W., and Sobel, B. E. 1983. Rabbit myocardial cytosolic lysophospholipase. Purification, characterization, and competitive inhibition byl-palmitoyl carnitine. J. Biol. Chem. 258:5221–5226.

    Google Scholar 

  11. Huang, H-M., and Sun, G. Y. 1984. Properties of two plasma membrane fractions isolated from rat brain. Fed. Proc. 43:773 (Abstr).

    Google Scholar 

  12. Sottocasa, G. L., Kuylenstierna, B., Ernster, L., and Bergstrand, A. 1967. An electron transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J. Cell Biol. 32:415–438.

    Google Scholar 

  13. Anner, B., and Moosmayer, M. 1975. Rapid determination of inorganic phosphate in biological systems by a highly sensitive photometric method. Analyt. Biochem. 65:305–309.

    Google Scholar 

  14. Muszbek, L., Szabo, T., and Fesus, L. 1977. A highly sensitive method for the measurement of ATPase activity. Analyt. Biochem. 77:286–288.

    Google Scholar 

  15. Sun, A. Y., and Samorajski, T. 1970. Effects of ethanol on the activity of adenosine triphosphatase and acetylcholinesterase in synaptosomes isolated from guinea pig brain. J. Neurochem. 17:1365–1372.

    Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  17. Strosznajder, J., Foudin, L., Tang, W., and Sun, G. Y. 1983. Serum albumin washing specifically enhances arachidonate incorporation into synaptosomal phosphatidylinositols. J. Neurochem. 40:84–90.

    Google Scholar 

  18. Franson, R. C., and Van den Bosch, H. 1982. Lysophospholipase activity of bovine adrenal medulla. Biochim. Biophys. Acta 711:75–82.

    Google Scholar 

  19. Chen, D-E., White, A. A. Tumbleson, M. E., and Sun, G. Y. 1985. Metabolism of lysophosphatidylcholine by swine platelets. Lipids 20:133–140.

    Google Scholar 

  20. De Jong, J. G. N., Van den Bosch, H., Aarsman, A. J., and Van Deenen, L. L. M. 1973. Studies on lysophospholipases. II. Substrate specificity of a lysolecithin hydrolyzing carboxylesterase from beef pancreas. Biochim. Biophys. Acta 296:105–115.

    Google Scholar 

  21. Gunawan, J., and Debuch, H. 1982. Lysoplasmalogenase—A microsomal enzyme from rat brain. J. Neurochem. 39:693–699.

    Google Scholar 

  22. Klopfenstein, W. E., deKruff, B., Verkleij, A. J., Demel, R. A., and van Deenen, L. L. M. 1974. Differential scanning colorimetry on mixtures of lecithin, lysolecithin and cholesterol. Chem. Phys. Lipid 13:215–222.

    Google Scholar 

  23. Kitagawa, T., Inoble, K., and Nojima, S. 1976. Cholesterollysolecithin complex. J. Biochem. (Tokyo) 79:1123–1133.

    Google Scholar 

  24. Ramsammy, L. S., and Brockerhoff, H. 1982. Lysophosphatidylcholine-cholesterol complex. J. Biol. Chem. 257:3570–3574.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G.Y., Tang, W., Huang, S.FL. et al. Lysophospholipase activity in rat brain subcellular fractions. Neurochem Res 12, 451–458 (1987). https://doi.org/10.1007/BF00972297

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972297

Key Words

Navigation