Skip to main content
Log in

Chick embryo retina development in vitro: The effect of insulin

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In this paper we study the development of chick embryo retina culturedin vitro and the effects exerted by insulin. Retinas were removed from 7-day embryos and cultured in serum-and hormone-free medium for 7 additional days. Under these conditions retinal cells survived and underwent cholinergic differentiation, as previously ascertained by Hausman et al. (Dev. Brain Res., 1991, 59: 31–37). However, a great retardation of development was noted compared to uncultured control, 14-day retina. In fact both wet weight and DNA and protein content increased much slower than in ovo and the tubulin content decreased below even the starting value. In addition, although after 7 days in culture retinal cells were organized in identifiable layers, nevertheless the typical organization equivalent to 14-day in ovo retina was absent. The addition of insulin in the medium markedly increased the wet weight of cultured retinas, their protein content and the level of tubulin pools, particularly that of non-assembled fraction. Nevertheless insulin did not modify DNA synthesis and did not induce the increment of both neuron specific enolase and actin. Morphological observations show that insulin markedly increased the number and the thickening of the fiber layers. These results, together with the facts that retina synthesizes and secretes insulin and possesses specific insulin receptors suggest that insulin can have autocrine or paracrine regulatory functions in retinal development by exerting a general effect on retinal growth and a more specific one on tubulin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinberg, R. H. 1994. Survival factors in retinal degenerations. Curr. Opin. Neurobiol. 4:515–524.

    PubMed  Google Scholar 

  2. Tesoriere, G., Vento, R., Calvaruso, G., Taibi, G., and Giuliano, M. 1992. Identification of insulin in chick embryo retina during development and its inhibitory effect on DNA synthesis. J. Neurochem. 58:1353–1359.

    PubMed  Google Scholar 

  3. Tesoriere, G., Calvaruso, G., Vento, R., Giuliano, M., Lauricella, M., and Carabillò, M. 1994. Insulin synthesis in chick embryo retinas during development. Neurochem. Res. 19:821–825.

    PubMed  Google Scholar 

  4. Anchan, R. M., Reh, T. A., Angello, J., Balliet, A., and Walker, M. 1991. EGF and TGF-α stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6:923–936.

    PubMed  Google Scholar 

  5. Lillien, L., Cepko, C. 1992. Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGFα. Development 115:253–266.

    PubMed  Google Scholar 

  6. Puro, D., and Agardh, E. 1984. Insulin mediated regulation of neuronal maturation. Science 225:1170–1172.

    PubMed  Google Scholar 

  7. Hausman, R. E., Vivek Sagar, G. D., and Shah, B. H. 1991. Initial cholinergic differentiation in embryonic chick retina is responsive to insulin and cell-cell interactions. Dev. Brain Res. 59:31–37.

    Google Scholar 

  8. Tesoriere, G., Vento, R., Taibi, G., Calvaruso, G., and Schiavo, M. R. 1989. Biochemical aspects of chick embryo retina development: the effects of glucocorticoids. J. Neurochem. 52:1487–1494.

    PubMed  Google Scholar 

  9. Peterson, S. W., Kiriakis, J. M., and Hausman, R. E. 1986. Changes in insulin binding to developing embryonic chick neural retina cells. J. Neurochem. 47:851–855.

    PubMed  Google Scholar 

  10. Tesoriere, G., Vento, R., Calvaruso, G., Schiavo, M. R., Giuliano, M., and Taibi, G. 1989. Inhibition of DNA synthesis in chick embryo retinas, in vitro, by a factor from fetal bovine serum. Dev. Brain Res. 47:19–25.

    Google Scholar 

  11. Arregui, C., and Barra, H. S., 1989. Tyrosination state of tubulin and the activity of tubulin: tyrosine ligase and tubulin carboxypeptidase in the developing retina of the chick. J. Neurochem. 52: 1708–1713.

    PubMed  Google Scholar 

  12. Black, M. M., and Greene, L. A. 1982. Changes in the colchicine susceptibility of microtubules associated with neurite outgrowth: studies with nerve growth factor-responsive PC12 pheochromocytoma cells. J. Cell Biol. 95:379–386.

    PubMed  Google Scholar 

  13. Borisy, G. G., 1972. A rapid method for quantitative determination of microtubule protein using DEAE-cellulose filters. Anal. Biochem. 50:373–385.

    PubMed  Google Scholar 

  14. Fonnum, F. 1975. A rapid radiochemical method for determination of cholineacetyltransferase. J. Neurochem. 24:407–409.

    PubMed  Google Scholar 

  15. Dietz, G. W. Jr., and Salvaterra, P. M. 1980. Purification and peptide mapping of rat brain choline acetyltransferase. J. Biol. Chem. 255:10612–10617.

    PubMed  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J.. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  17. Wooten, G. F., Kopin, I. J., and Axerold, J. 1975. Effects of colchicine and vinblastine on axonal transport and transmitter release in sympathetic nerves. Ann. N. Y. Acad. Sci. 253:528–534.

    PubMed  Google Scholar 

  18. Brinkley, B. R., and Cartwright, J. Jr. 1975. Cold-labile and coldstable microtubules in the mitotic spindle of mammalian cells. Ann. N. Y. Acad. Sci. 253:428–439.

    PubMed  Google Scholar 

  19. Malaisse, W. J., Malaisse-Lagae, F., Van Obberghen, E., Somers, G., Devis, G., Ravazzola, M., and Orci, L. 1975. Role of microtubules in the phasic pattern of insulin release. Ann. N. Y. Acad. Sci. 253:630–652.

    PubMed  Google Scholar 

  20. Mitchison, T., Kirschner, M. 1988. Cytoskeletal dynamics and nerve growth. Neuron 1:761–772.

    PubMed  Google Scholar 

  21. Meininger, V., Binet, S. 1989. Characteristics of microtubules at the different stages of neuronal differentiation and maturation. Int. Rev. Cytol. 114:21–79.

    PubMed  Google Scholar 

  22. Bassas, L., De Pablo, F., Lesniak, M. A., and Roth, J. 1985. Ontogeny of receptors for insulin like peptides in chick embryo tissues: early dominance of insulin like growth factor over insulin receptors in brain. Endocrinology 117:2321–2329.

    PubMed  Google Scholar 

  23. Hill, J. M., Lesniak, M. A., Pert, C. B., and Roth, J. 1986. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17:1127–1138.

    PubMed  Google Scholar 

  24. Heidenreich, K. A., de Vellis, G., and Gilmore, P. R. 1988. Functional properties of the subtype of insulin receptor found on neurons. J. Neurochem. 51:878–887.

    PubMed  Google Scholar 

  25. Aizenman, Y., Weiche, M. E., and de Vellis, J. 1986. Changes in insulin and transferrin requirements of pure neuronal cultures during embryonic development. Proc. Natl. Acad. Sci. USA 83:2263–2266.

    PubMed  Google Scholar 

  26. Yang, J. W., and Fellows, R. E. 1980. Characterization of insulin stimulation of the incorporation of radioactive precursor into macromolecules in cultured rat brain cells. Endocrinology 107:1717–1724.

    PubMed  Google Scholar 

  27. Yang, J. W., Raizada, M. K., and Fellows, R. E. 1978. Hormonal stimulation of ornithine decarboxylase activity in cells cultured from rat brain. Fed. Proc. 37:1785.

    Google Scholar 

  28. Recio-Pinto, E., and Ishii, D. N. 1984. Effects of insulin-like growth factor II, and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res. 302:323–334.

    PubMed  Google Scholar 

  29. Recio-Pinto, E., Lang, F. F., and Ishii, D. N. 1984. Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurite formation response in cultured human neuroblastoma cells. Proc. Natl. Acad. Sci. USA 81:2562–2566.

    PubMed  Google Scholar 

  30. Recio-Pinto, E., and Ishii, D. N. 1988. Insulin and insulin-like growth factor receptors regulating neurite outgrowth in cultured human neuroblastoma cells. J. Neurosci. Res. 19:312–320.

    PubMed  Google Scholar 

  31. Recio-Pinto, E., Rechler, M. M., and Ishii, D. N. 1986. Effects of insulin, insulin-like growth factor II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. J. Neurosci. 6:1211–1219.

    PubMed  Google Scholar 

  32. Mill, J. F., Chao, M. W., and Ishii, D. N. 1985. Insulin, insulin-like growth factor II, and nerve growth factor effects on tubulin mRNA levels and neurite formation. Proc. Natl. Acad. Sci. USA 82:7126–7130.

    PubMed  Google Scholar 

  33. Fernyhough, P., Mill, J. F., Roberts, J. L., and Ishii, D. N. 1989. Stabilization of tubulin and mRNAs by insulin and insulin like growth factor I during neurite formation. Mol. Brain Res. 6:109–120.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesoriere, G., Vento, R., Morello, V. et al. Chick embryo retina development in vitro: The effect of insulin. Neurochem Res 20, 803–813 (1995). https://doi.org/10.1007/BF00969692

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969692

Key Words

Navigation