Skip to main content
Log in

Factors contributing to cerebral hypomyelination in the growth hormone-deficientlittle mouse

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We attempted to delineate the events leading to hypomyelination in the brain of thelittle mouse, a promising murine model of isolated growth hormone deficiency. At 20 days of age, the mutant mouse brain weighed less than its normal counterpart, and this difference in brain weight persisted. Increase in CNPase activity was found to be suppressed in the cerebrum throughout the developmental stage, but not in the other parts of the brain. Differences in cerebral DNA content between thelittle and normal mice first became apparent on the 10th day of age. Thereafter, the rate of increase in thelittle brain consistently lagged behind the normal. [3H]Thymidine incorporation into the DNA fraction in vivo on the 7th day of age, when glial cell proliferation in the normal cerebrum is most active, was approximately half that of the controls in all parts of thelittle brain. These findings indicate that the hypomyelination of the mutant cerebrum might result from reduced oligodendroglial proliferation due to growth hormone deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eicher, E. M., and Beamer, W. G. 1976. Inherited ateliotic dwarfism in mice; characteristics of mutation, Little, on chromosome 6. J. Heredity 67:87–91.

    Google Scholar 

  2. Noguchi, T., Sugisaki, T., and Tsukada, Y. 1985. Microcephalic cerebrum with hypomyelination in the isolated growth hormone deficient mouse (lit). Neurochem. Res. 10:1097–1106.

    PubMed  Google Scholar 

  3. Noguchi, T., Sugisaki, T., Nishikawa, N., and Tsukada, Y. 1988. Restoration of microcephalic cerebrum with hypomyelination in the growth hormone-deficient mouse (lit): stimulatory effects of GH restricted to the first 20 days of postnatal life. Neurochem. Res. 13:249–252.

    PubMed  Google Scholar 

  4. Noguchi, T., Sugisaki, T., Kanamatsu, T., Satoh, I., and Nishikawa, N. 1988. Reduced vasoactive intestinal polypeptide immunoreactivity in the pituitaries of hormone-deficient mutant mice. J. Endocr. 118:179–185.

    PubMed  Google Scholar 

  5. Schmidt, G., and Thannhauser, S. J. 1945. A method for the determination of deoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissue. J. Biol. Chem. 161:83–89.

    Google Scholar 

  6. Kurihara, T., and Tsukada, Y. 1967. The regional and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in the central nervous system. J. Neurochem. 14:1167–1174.

    PubMed  Google Scholar 

  7. Tsukada, Y., Nagai, K., and Suda, H. 1980. A rapid micro method for 2′,3′-cyclic nucleotide 3′-phosphohydrolase assay using micro high performance liquid chromatography. J. Neurochem. 34:1019–1022.

    PubMed  Google Scholar 

  8. Burton, K. 1956. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62:315–323.

    PubMed  Google Scholar 

  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  10. Pelton, E. W., Young, E., Bass, N. H., and Grindeland, R. E. 1974. Defective myelinogenesis in developing rat cerebrum induced by selective growth hormone deficiency. Neurology 24:3777.

    Google Scholar 

  11. Noguchi, T., Sugisaki, T., Watanabe, M., Kohsaka, S., and Tsukada, Y. 1982. Effect of bovine growth hormone on the retarded cerebral development induced by neonatal hydrocortisone intoxication. J. Neurochem. 38:246–256.

    PubMed  Google Scholar 

  12. Noguchi, T., Sugisaki, T., and Tsukada, Y. 1982. Postnatal action of growth and thyroid hormones on the retarded cerebral myelinogenesis of Snell dwarf mice (dw). J. Neurochem. 38:257–263.

    PubMed  Google Scholar 

  13. Noguchi, T., and Sugisaki, T. 1986. Stimulatory effects of growth hormone and thyroxine on the concentration of gangliosides in the Snell dwarf cerebrum. J. Neurochem. 47:1785–1792.

    PubMed  Google Scholar 

  14. Mirsky, A. E., and Ris, H. 1949. Variable and constant components of chromosomes. Nature 163:666–667.

    Google Scholar 

  15. Sugisaki, T., Noguchi, T., and Tsukada, Y. 1985. Cerebral myelinogenesis in the Snell dwarf mouse: stimulatory effects of GH and T4 restricted to the first 20 days of postnatal life. Neurochem. Res. 10:767–778.

    PubMed  Google Scholar 

  16. Pecile, A., and Müller, E. 1966. Suppressive action of corticosterone on the secretion of growth hormone. J. Endocr. 36:401–408.

    PubMed  Google Scholar 

  17. Sawano, S., Arimura, A., Schally, A. V., Redding, T. W., and Schapiro, S. 1969. Neonatal corticoid administration effects upon adult pituitary growth hormone and hypothalamus growth hormone releasing hormone activity. Acta Endocrinol. (Copenh.) 61:57–67.

    Google Scholar 

  18. Maley, G. F., Lorenson, M. G., and Maley, F. 1965. Inhibitors of protein synthesis: Effect on the levels of deoxycytidylate deaminase, thymidylate synthetase and thymidine kinase in regenerating rat liver. Biochem. Biophys. Res. Commun. 18:364–370.

    PubMed  Google Scholar 

  19. Bresnick, E., Williams, S. S., and Mösse, H. 1967. Rates of turnover of deoxythymidine kinase and of its template RNA in regenerating and control liver. Cancer Res. 27:469–475.

    PubMed  Google Scholar 

  20. Russell, D. H., Snyder, S. H., and Medina, V. J. 1970. Growth hormone induction of ornithine decarboxylase in rat liver. Endocrinol. 86:1414–1419.

    Google Scholar 

  21. Roger, L. J., Schanberg, S. M., and Fellows, R. E. 1974. Growth and lactogenic hormone stimulation of ornithine decarboxylase in neonatal rat brain. Endocrinol. 95:904–911.

    Google Scholar 

  22. Noguchi, T., Sugisaki, T., Watanabe, M., Tsukada, Y., and Tanabe, M. 1980. Brain development and growth factors, Page 207–230,in Shizume, S., and Takano, K., (eds.) Growth and Growth Factors. Tokyo University Press, Tokyo.

    Google Scholar 

  23. Tsukada, Y., Nomura, M., Nagai, K., Kohsaka, S., Kawahata, H., Ito, M., and Matsutani, T. 1977. Neurochemical correlates of learning ability. Pages 63–84,in delGado, J. M. R., and De Feudis, F. V., (eds.) Behavioral Neurochemistry. Spectrum, New York.

    Google Scholar 

  24. Howard, E. 1965. Effects of corticosterone and food restriction on growth and on DNA/RNA and cholesterol content of brain and liver in infant mice. J. Neurochem. 12:181–191.

    PubMed  Google Scholar 

  25. Schapiro, S. 1971. Influence of hormonal and environmental stimulation on brain development. Pages 63–73,in Influence of Hormones of the Nervous System, Proc. Int. Soc. Psychoneuroendocrinol., Brooklyn, 1970, Karger, Basel.

    Google Scholar 

  26. Noguchi, T., Sugisaki, T., Takamatsu, K., and Tsukada, Y. 1982. Factors contributing to the poor myelination in the brain of the Snell dwarf mouse. J. Neurochem. 39:1693–1699.

    PubMed  Google Scholar 

  27. Fujita, S., Shimada, M., and Nakamura, T. 1966. H3-Thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granule layer of the mouse cerebellum. J. Comp. Neurol. 128:191–208.

    PubMed  Google Scholar 

  28. Fujita, S. 1967. Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J. Cell Biol. 32:27–288.

    PubMed  Google Scholar 

  29. Noguchi, T., and Sugisaki, T. 1985. Abnormal neuronal growth in thelittle (lit) cerebrum. Exp. Neurol. 89:274–278.

    PubMed  Google Scholar 

  30. Mayberry, H. E., Van den Brande, J. L., Van Wyk, J. J., and Waddel, W. J. 1971. Early localization of125I-labeled human growth hormone in adrenals and other organs of immature hypophysectomized rats. Endocrinol. 88:1309–1317.

    Google Scholar 

  31. Laron, Z., and Galatzer, A. 1980. Aspects of brain development in children and adolescents with pituitary growth hormone deficiency. Pages 293–302, In DeWied, D., and Van Keep, P. A., (eds.) Hormones and the Brain. MTP Press, Lancaster, England.

    Google Scholar 

  32. Sara, V. R., Hall, K., and Wetterberg, L. 1980. Growth hormone-dependent polypeptides and the brain. Pages 63–72,in DeWied, D., and Van Keep, P. A., (eds.) Hormones and the Brain. MTP Press, Lancaster, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morisawa, K., Sugisaki, T., Kanamatsu, T. et al. Factors contributing to cerebral hypomyelination in the growth hormone-deficientlittle mouse. Neurochem Res 14, 173–177 (1989). https://doi.org/10.1007/BF00969635

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969635

Key Words

Navigation