Skip to main content
Log in

Pharmacological effects of phenylalanine on seizure susceptibility: An overview

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of excessive doses of phenylalanine on seizure susceptibility were examined in animal models in the past, primarily because of their relevance to phenylketonuria. It was thought that such effects might involve brain monoaminergic mechanisms. Recently, this issue has been pursued with a renewed interest but for a different reason. The dipeptide sweetener, aspartame, contains a phenylalanine residue. In the last three years, a number of studies involving as many as nine animal models of seizures have reexamined the effects of phenylalanine (and aspartame) on seizure thresholds. Data from these studies are in general aggreement that aspartame at dosage levels below 1,000 mg/kg, or phenylalanine at equimolar doses, is without an effect on seizure susceptibility in animals. When the dosage level of aspartame reaches 1,000 mg/kg, the findings between various laboratories and from different animal models of seizures are inconsistent, showing either no effect or a proconvulsant effect. The Acceptable Daily Intake of aspartame in humans set by the Food and Drug Administration is 50 mg/kg/day. Thus, the data from the excessive bolus doses in rodents do not appear to be relevant to human use. This article provides a detailed review of the data from both early and recent studies and points out the methodological problems apparent at such high doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallagher, B. B., Richard, J. W., and Glaser, G. H. 1968. Seizure threshold and excess dietary amino acids. Neurology 18:208–212.

    PubMed  Google Scholar 

  2. Gallagher, B. B. 1969. Amino acids and cerebral excitability. J. Neurochem. 16:701–706.

    PubMed  Google Scholar 

  3. Gallagher, B. B. 1970. Relationship of phenylalanine to seizure threshold during maturation. J. Neurochem. 17:373–380.

    PubMed  Google Scholar 

  4. Baker, H. J., Lindsey, J. R., and Weisbroth, S. H. 1980. Selected normative data. Page 257–258,in Baker, H. J., Lindsey, J. R., and Weisbroth, S. H. (eds.), The Laboratory Rat, Volume II: Research Applications, Academic Press, New York.

    Google Scholar 

  5. Schlesinger, K., Schreiber, R. A., Griek, B. J., and Henry, K. R. 1969. Effects of experimentally induced phenylketonuria on seizure susceptibility in mice. J. Comp. Physiol. Psychol. 67:149–155.

    PubMed  Google Scholar 

  6. Truscott, T. C. 1975. Effects of phenylalanine and 5-hydroxytryptophan on seizure severity in mice. Pharmacol. Biochem. Behav. 3:939–941.

    PubMed  Google Scholar 

  7. Sze, P. Y. 1969. Neurochemical factors in auditory stimulation and development of susceptibility to audiogenic seizures. Pages 259–269,in Welch, B. L., and Welch, A. S. (eds.), Physiological Effects of Noise, Plenum Press, New York.

    Google Scholar 

  8. Schlesinger, K., Boggan, W. O., and Freedman, D. X. 1970. Genetics of audiogenic seizures: III. Time response relationships between drug administration and seizure susceptibility. Life Sci. 9:721–729.

    Google Scholar 

  9. Wurtman, R. J. 1985. Aspartame: possible effect on seizure susceptibility. Lancet 2:1060.

    Google Scholar 

  10. Wurtman, R. J., and Maher, T. J. 1988. Effects of aspartame on the brain. Pages 149–158,in Williams, G. M. (ed.), Sweeteners: Health Effects, Princeton Scientific Publishing Co., Princeton, New Jersey.

    Google Scholar 

  11. Maher, T. J., and Wurtman, R. J. 1987. Possible neurologic effects of aspartame, a widely used food additive. Environ. Health Perspect, 75:53–57.

    PubMed  Google Scholar 

  12. Nevins, M. E., Arnolde, S. M., and Haigler, H. J. 1986. Aspartame: Lack of effect on convulsant thresholds in mice. Ted. Proc. 45:1096.

    Google Scholar 

  13. Nevins, M. E., Arnolde, S. M., and Haigler, H. J. 1986. Aspartame: Lack of effect on conyulsant thresholds in mice. Pages 437–449, in Kaufman, S. (ed.), Amino Acids in Health and Diseases: New Perspectives, Alan R. Liss, New York.

    Google Scholar 

  14. Pinto, J. M. B., and Maher, T. 1986. High dose aspartame lowers the seizure threshold to subcutaneous pentylenetetrazole in mice. Pharmacologist. 28:201

    Google Scholar 

  15. Pinto, J. M. B., and Maher, T. J. 1988. Administration of aspartame potentiates pentylenetetrazole- and fluorothyl-induced seizures in mice. Neuropharmacology 27:51–55.

    PubMed  Google Scholar 

  16. Pinto, J. M. B., and Maher, T. J. 1987. Tyrosine protects against pentylenetetrazole-induced seizures in mice. Pharmacologist 29:141.

    Google Scholar 

  17. Jobe, P.C., Bettendorf, A. F., Lasley, S. M., and Dailey, J. W. 1988. Effects of aspartame on pentylenetetrazol (PTZ)-induced convulsions in CD1 mice. Toxicologist, 8:85.

    Google Scholar 

  18. Garattini, S., Perego, C., Caccia, S., Vezzani, A., and Salmona, M. 1988. Aspartame, brain amino acids and neurochemical mediators. Page 137–148,in Williams, G. M. (ed.), Sweeteners: Health Effects, Princeton Scientific Publishing Co., Princeton, New Jersey.

    Google Scholar 

  19. Garratini, S., Caccia, S., Romano, M., Diomede, L., Guiso, G., Vezzani, A., and Salmona, M. 1987. Studies on the susceptibility to convulsions in animals receiving abuse doses of aspartame. Page 131–143,in Wurtman, R. J., and Ritter-Walker, E. (eds.), Dietary Phenylalanine and Brain Function, Birkhauser, Boston.

    Google Scholar 

  20. Maher, T., and Pinto, J. M. B. 1987. Aspartame administration potentiates fluorothyl-induced seizures in mice. J. Neurochem. 48:S52.

    Google Scholar 

  21. Jobe, P. C., Lasley, S. M. Bettendorf, A. F., Frasca, J. J., and Dailey, J. W. 1988. Studies of aspartame on supramaximal electroshock seizures in epileptic and non-epileptic rats. FASEB J. 2:A1067.

    Google Scholar 

  22. Seyfried, T. N., and Glaser, G. H. 1985. A review of mouse mutants as genetic models of epilepsy. Epilepsia 26:143–150.

    PubMed  Google Scholar 

  23. Woodbury, D. M., Chiu, P. and Engstrom, F. L., and Ota, L. 1986. Experimentally-induced seizures in mice as genetic models of epilepsy for evaluation of the effects of aspartame and its metabolites. International Aspartme Workshop Proceedings, Life Sciences Institute — Nutrition Foundation, November 17–21, Marbella, Spain.

  24. Jobe, P. C., Picchioni, A. L., and Chin, L. 1973. Role of brain norepinephrine in audiogenic seizures in the rat. J. Pharmacol. Exp. Ther. 184:1–10.

    PubMed  Google Scholar 

  25. Jobe, P. C., Ko, K. H., and Dailey, J. W. 1984. Abnormalities in norepinephrine turnover rate in the central nervous system of the genetically epilepsy-prone rat. Brain Res. 290:357–360.

    PubMed  Google Scholar 

  26. Jobe, P. C., Dailey, J. W., and Reigel, C. E. 1986. Noradrenergic and serotonergic determinants of seizure susceptibility and severity in genetically epilepsy-prone rats. Life Sci. 39:775–782.

    PubMed  Google Scholar 

  27. Dailey, J. W., Lasley, S.., Frasca, J., and Jobe, P.C. 1987. Aspartame (APM) is not proconvulsant in the genetically epilepsyprone rat (GERP). Pharmacologist 29:142.

    Google Scholar 

  28. Dailey, J.W., Lasley, S. M., and Bettendorf, A. F., Burger, R., and Jobe, P. C. in press. Aspartame does not facilitate pentylenetetrazol induced seizures in genetically epilepsy prone rats. Epilepsia.

  29. Lasley, S. M., Jobe, P. C., Burger, R. L., Bettendorf, A. F., and Dailey, J. W. 1988. Aspartame (ASM)-induced changes in plasma and brain amino acids in the absence of effects on seizure severity. Soc. Neurosci. Abst. 14:594.

    Google Scholar 

  30. Meldrum, B. S. 1987. Lack of effect of L-cl-phenylalanine on photically-induced myoclonus in the baboon, Papio papio. Soc. Neurosci. Abst. 13:476.

    Google Scholar 

  31. Meldrum, B., and Nanji, N. 1988. Lack of effect of large doses of aspartame on photically-induced seizures in the baboon (Papio papio). FASER J. 2:A434.

    Google Scholar 

  32. Garattini, S., Caccia, S. and Salmona, M. 1986. Aspartame, brain amino acids and neurochemical mediators. In International Aspartame Workshop Proceedings, Nnternational Life Sciences Institute — Nutrition Foundation, November 17–21, Marbella, Spain.

  33. Fountain, S. B., Bradler, J. E., and Teyler, T. J. 1986. Aspartame exposure and in vitro hippocampal brain slice excitability and plasticity. Soc. Neurosci. Abst. 12:93.

    Google Scholar 

  34. Opperman, J. A. 1984. Aspartame metabolism in animals. Page 141–159,in Stegink, L. D., and Filer, L. J. (eds.), Aspartame: Physiology and Biochemistry. Marcel Dekker, New York.

    Google Scholar 

  35. Kim, K. C., and Kim, S. H. 1987. Studies on the effect of aspartame and lidocaine interaction in central nervous system in mice. Fed. Proc. 46:705.

    Google Scholar 

  36. Thai, L., Tilson, H.A., Zhao, D., Sobotka, T., and Hong, J.S. 1988. Lack of effect of aspartame on kindling, electroconvulsive shock (ECS) and metrazol-induced seizures in rats. Soc. Neurosci. Abst. 14:866.

    Google Scholar 

  37. Tilson, H. A., Zhao, D., Peterson, N. J., Nanry, K., and Hong, J. S. 1987. Behavioral and neurological effects of aspartame. Page 105–115,in Wurtman, R. J., and Ritter-Walker, E. (eds.), Dietary Phenylalanine and Brain Function, Center for Brain Sciences and Metabolism Charitable Trust, Cambridge, Massachusetts.

    Google Scholar 

  38. Yokogoshi, H., Roberts, C. H., Caballero, B., and Wurtman, R. J. 1984. Effects of aspartame and glucose metabolism on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles. Am. J. Clin. Nutr. 40:1–7.

    PubMed  Google Scholar 

  39. Maher, T. J. 1986. Neurotoxicity of food additives. Neurotoxicology 7:183–196.

    PubMed  Google Scholar 

  40. Wurtman, R. J., and Maher, T. J. 1987. Effects of oral aspartame on plasma phenylalanine in humans and experimental rodents. J. Neural Transm. 70:169–173.

    PubMed  Google Scholar 

  41. Fernstrom,J. D. in press. Oral aspartame and plasma phenylalanine: pharmacokinetic difference between rodents and man, and relevance to CNS effects of phenylalanine. J. Neural Transm.

  42. Green, H., Greenberg, S. M., Erickson, R. W., Sawyer, J. S., and Ellison, T. 1962. Effect of dietary phenylalanine and tryptophan upon rat brain amine levels. J. Pharmacol. Exp. Ther. 136:174–178.

    PubMed  Google Scholar 

  43. Boggs, D. E., and Waisman, H. A. 1964. Biochemical correlates in rats with phenylketonuria. Arch. Biochem. Biophys. 106:307–311.

    PubMed  Google Scholar 

  44. Yuwiler, A., Geller, E., and Slater, G. G. 1965. On the mechanism of the brain serotonin depletion in experimental phenylketonuria. J. Biol. Chem. 240:1170–1174.

    PubMed  Google Scholar 

  45. Yuwiler, A., and Geller, E. 1969. Brain serotonin changes in phenylalanin-ffed rats: synthesis storage and degradation. J. Neurochem. 16:999–1005.

    PubMed  Google Scholar 

  46. Fernstrom, J. D. 1988. Effects of aspartame ingestion on large neutral amino acids and monoamine neurotransmitters in the central nervous system. Pages 87–94,in Wurtman, R. J., and Ritter-Walker, E. (eds.), Dietary Phenylalanine and Brain Function, Birkhauser, Boston.

    Google Scholar 

  47. Wurtman, R. J., and Fernstrom, J. D. 1975. Control of brain monoamine synthesis by diet and plasma amino acids. Am. J. Clin. Nutr. 28:638–647.

    PubMed  Google Scholar 

  48. Pardridge, W. M. 1977. Regulation of amino acid availability to the brain. Pages 141–204,in Wurtman, R. J., and Wurtman, J. J. (eds.), Nutrition and the Brain. Raven Press, New York.

    Google Scholar 

  49. Fernstrom, J. D., Fernstrom, M. H., and Gillis, M. A. 1983. Acute effects of aspartame on large neutral amino acids and monoamines in rat brain. Life Sci. 32:1651–1658.

    PubMed  Google Scholar 

  50. Wurtman, R. J. 1983. Neurochemical changes following highdose aspartame with dietary carbohydrates. N. Engl. J. Med. 309:427–430.

    Google Scholar 

  51. Yokogoshi, H., and Wurtman, R. J. 1986. Acute effects of oral and parenteral aspartame on catecholamine metabolism in various regions of rat brain. J. Nutr. 116:356–364.

    PubMed  Google Scholar 

  52. Coulombe, R. A., and Sharma, R. 1986. Neurobiochemical alterations induced by the artificial sweetener aspartame (Nutra-Sweet). Toxicol. Appl. Pharmacol. 83:79–85.

    PubMed  Google Scholar 

  53. Tam, S. Y., Ono, N., and Roth, R. H. 1987. Precursor control and influence of aspartame on midbrain dopamine neurons. Pages 421–435,in Kaufman, S. (ed.), Amino Acids in Health and Diseases: New Perspectives, Alan R. Liss, New York.

    Google Scholar 

  54. Bannon, M. J., and Roth, R. H. 1983. Pharmacology of mesocortical dopamine neurons. Pharmacol Rev. 35:53–68.

    PubMed  Google Scholar 

  55. Fernstrom, J. D. 1983. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 63:485–546.

    Google Scholar 

  56. Fernstrom, J. D., Fernstrom, M. H., and Grubb, P. E. 1986. Effects of aspartame ingestion on the carbohydrate-induced rise in tryptophan hydroxylation rate in rat brain. Am. J. Clin. Nutr. 44:195–205.

    PubMed  Google Scholar 

  57. Boggan, W. O., and Seiden, L. S. 1971. Dopa reversal of reserpine enhancement of audiogenic seizure susceptibility in mice. Physiol. Behav. 6:215–217.

    PubMed  Google Scholar 

  58. McKenzie, G. M., and Soroko, F. E. 1972. The effects of apomorphine, (+)-amphetamine and L-dopa on maximal electroshock convulsions — a comparative study in the rat and mouse. J. Pharm. Pharmacol. 24:696–701.

    PubMed  Google Scholar 

  59. McKenzie, G. M., and Soroko, F. E. 1973. Inhibition of the anticonvulsant activity of L-dopa by FLA-63, a dopamine-beta-hydroxylase inhibitor. J. Pharm. Pharmacol. 25:76–77.

    PubMed  Google Scholar 

  60. Yanai, J., Sze, P. Y., and Ginsburg, B. E. 1975. Effects of aminergic drugs on audiogenic seizures induced by early exposure to ethanol. Epilepsia 16:67–71.

    PubMed  Google Scholar 

  61. Arnold, P., Racine, R., and Wise, R. 1973. Effects of atropine, reserpine and 6-hydroxydopamine, and handling on seizure development in the rat. Exp. Neurol. 40:457–460.

    PubMed  Google Scholar 

  62. Altman, I. M., and Corcoran, M. E. 1983. Facilitation of neocortical kindling by depletion of forebrain noradrenaline. Brain Res. 270:174–177.

    PubMed  Google Scholar 

  63. Schlesinger, K. and Griek, B. 1970. The genetics and biochemistry of audiogenic seizures. Pages 219–257,in Lindzey G., and Thiessen, D. D. (eds.), Contributions to Behavior-Genetic Analysis, Appleton-Centuray-Crofts. New York.

    Google Scholar 

  64. Kellogg, C. 1976. Audiogenic seizures: relation to age and mechanisms of monoamine neurotransmission. Brain Res. 106:87–103.

    PubMed  Google Scholar 

  65. Milner, J. D., Irie, K., and Wurtman, R. J. 1986. Effects of phenylalanine on the release of endogenous dopamine from rat striatal slices. J. Neurochem. 47:1444–1448.

    PubMed  Google Scholar 

  66. Meldrum, B. S. 1982. Pathophysiology. Pages 456–487, in Laidlaw, J. P., and Richens, A. (eds.), A Textbook of Epilepsy, Churchill Livington, New York.

    Google Scholar 

  67. Aird, R. B. 1983. The importance of seizure-inducing factors in the control of refractory forms of epilepsy. Epilepsia 24:567–583.

    PubMed  Google Scholar 

  68. Woodbury, D. M., and Vernadakis, A. 1966. Effects of steroids on the central nervous system. Pages 1–10,in Dorfman, R.J. (ed.), Methods in Hormone Research, Vol. 5, Academic Press, New York.

    Google Scholar 

  69. Sze, P. Y., Yanai, J., and Ginsburg, B. E. 1974. Adrenal glucocorticoids as a required factor in the development of ethanol withdrawal seizures in mice. Brain Res. 80:155–159.

    PubMed  Google Scholar 

  70. Maxson, S. C., and Sze, P. Y. 1977. Glucocorticoids and development of audiogenic seizure susceptibility in DBA/2Bg mice. Psychopharmacology 53:217–222.

    PubMed  Google Scholar 

  71. McQuarrie, I., and Peeler, D. B. 1931. The effects of sustained pituitary antidiuresis and forced water drinking in epileptic children. A diagnostic and etiologic study. J. Clin. Invest. 10:915–940.

    Google Scholar 

  72. Rowntree, L. G. 1926. The effects of mammals of the administration of excessive quantities of water. J. Pharmacol. Exper. Therap. 24:135–144.

    Google Scholar 

  73. Fishman, R. A. 1974. Cell volume, pumps and neurologic function: brain adaptation to osmotic stress. Proc. Ass. Nerv. Ment. Dis. 53:159–171.

    Google Scholar 

  74. Gallagher, B. B. 1971. The influence of tyrosine, phenylpyruvate and vitamin B6 upon seizure thresholds. J. Neurochem. 18:799–808.

    PubMed  Google Scholar 

  75. Kaufman, S. 1971. The phenylalanine hydroxylating system from mammalian liver. Adv. Enzymol. 35:245–319.

    PubMed  Google Scholar 

  76. Stegink, L. D. 1984. Aspartame metabolism in humans: acute dosing studies. Page 508–533,in Stegink, L. D., and Filer, L. J. (eds.), Aspartame: Physiology and Biochemistry, Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sze, P.Y. Pharmacological effects of phenylalanine on seizure susceptibility: An overview. Neurochem Res 14, 103–111 (1989). https://doi.org/10.1007/BF00969624

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969624

Key Words

Navigation