Skip to main content

Advertisement

Log in

Low Dose Zinc Supplementation Beneficially Affects Seizure Development in Experimental Seizure Models in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The role of zinc in seizure models and with antiepileptic drugs sodium valproate (SV) and phenytoin (PHT) was studied using experimental models of seizures in rats. Male Wistar rats, 150–250 g were administered zinc 2, 20, and 200 mg/kg, orally for 14 days. Sixty minutes after the last dose of zinc, rats were challenged with pentylenetetrazole (PTZ, 60 mg/kg, ip) or maximal electroshock (MES, 70 mA, 0.2 s duration). In another group, SV (150/300 mg/kg, ip) or PHT (40 mg/kg, ip) was administered after 30 min of zinc administration followed by seizure challenge. Zinc pretreatment at all doses had no effect on MES seizures. In PTZ seizures, with the lowest dose used, i.e., 2 mg/kg, a protective effect was observed. Neither the protection offered by the 100 % anticonvulsant dose of SV (300 mg/kg) in PTZ seizures was affected by pre-treatment with zinc nor a combination of subanticonvulsant dose of SV (150 mg/kg) and zinc offer any statistically significant advantage over either drug alone. The combination of phenytoin with zinc had no effect on any of the parameters tested. Apart from this, chronic zinc administration hampered development of chemically (PTZ)-kindled seizures in rats. Zinc supplementation is unlikely to have any undesirable effect when used in epileptics rather it may offer advantage in epileptic and seizure prone patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366. doi:10.1023/A:1012934207456

    Article  CAS  PubMed  Google Scholar 

  2. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148. doi:10.1016/S0165-0173(00)00044-8

    Article  CAS  PubMed  Google Scholar 

  3. Grabrucker AM, Rowan M, Garner C (2011) Brain delivery of zinc ions as potential treatment for neurological diseases: mini review. Drug Deliv Lett 1:13–23. doi:10.2174/2210303111101010013

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Ganesh R, Janakiraman L (2008) Serum zinc levels in children with simple febrile seizure. Clin Pediatr (Phila) 47:164–166. doi:10.1177/0009922807306165

    Article  CAS  Google Scholar 

  5. Farahani HN, Ashthiani AR, Masihi MS (2013) Study on serum zinc and selenium levels in epileptic patients. Neurosciences (Riyadh) 18:138–142

    Google Scholar 

  6. Saad K, Hammad E, Hassan AF, Badry R (2014) Trace element, oxidant, and antioxidant enzyme values in blood of children with refractory epilepsy. Int J Neurosci 124:181–186. doi:10.3109/00207454.2013.831851

    Article  CAS  PubMed  Google Scholar 

  7. Ristic AJ, Sokic D, Bascarevic V, Spasic S, Vojvodic N, Savic S, Raicevic S, Kovacevic M, Savic D, Spasojevic I (2014) Metals and electrolytes in sclerotic hippocampi in patients with drug-resistant mesial temporal lobe epilepsy. Epilepsia 55:e34–e37. doi:10.1111/epi.12593

    Article  CAS  PubMed  Google Scholar 

  8. Peixoto-Santos JE, Galvis-Alonso OY, Velasco TR, Kandratavicius L, Assirati JA, Carlotti CG, Scandiuzzi RC, Serafini LN, Leite JP (2012) Increased metallothionein I/II expression in patients with temporal lobe epilepsy. PLoS One 7:e44709. doi:10.1371/journal.pone.0044709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sarangi SC, Tripathi M, Kakkar AK, Gupta YK (2014) Effect of antiepileptic therapy on trace elements status in Indian population in a tertiary care hospital from northern India: a cross sectional study. Epilepsy Res 108:917–927. doi:10.1016/j.eplepsyres.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  10. Baraka AM, Hassab El Nabi W, El Ghotni S (2012) Investigating the role of zinc in a rat model of epilepsy. CNS Neurosci Ther 18:327–333. doi:10.1111/j.1755-5949.2011.00252.x

    Article  CAS  PubMed  Google Scholar 

  11. Doering P, Stoltenberg M, Penkowa M, Rungby J, Larsen A, Danscher G (2010) Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 5:e10131. doi:10.1371/journal.pone.0010131

    Article  PubMed Central  PubMed  Google Scholar 

  12. Elsas SM, Hazany S, Gregory WL, Mody I (2009) Hippocampal zinc infusion delays the development of after discharges and seizures in a kindling model of epilepsy. Epilepsia 50:870–879. doi:10.1111/j.1528-1167.2008.01913.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Khanna N, Garg A, Sharma KK, Khosla R (1997) Modulation of convulsive threshold of pentylenetetrazole by zinc. Indian J Clin Biochem 12:86–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lee JY, Kim JH, Palmiter RD, Koh JY (2003) Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp Neurol 184:337–347. doi:10.1016/S0014-4886(03)00382-0

    Article  CAS  PubMed  Google Scholar 

  15. Zhu L, Ji XJ, Wang HD, Pan H, Chen M, Lu TJ (2012) Zinc neurotoxicity to hippocampal neurons in vitro induces ubiquitin conjugation that requires p38 activation. Brain Res 1438:1–7. doi:10.1016/j.brainres.2011.12.031

    Article  CAS  PubMed  Google Scholar 

  16. Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD (2000) Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res 39:153–169. doi:10.1016/S0920-1211(99)00121-7

    Article  CAS  PubMed  Google Scholar 

  17. Takeda A, Iida M, Ando M, Nakamura M, Tamano H, Oku N (2013) Enhanced susceptibility to spontaneous seizures of noda epileptic rats by loss of synaptic zn(2+). PLoS One 8:e71372. doi:10.1371/journal.pone.0071372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Malhotra J, Gupta YK (1997) Effect of adenosine receptor modulation on pentylenetetrazole-induced seizures in rats. Br J Pharmacol 120:282–288. doi:10.1038/sj.bjp.0700869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gilbert ME, Mack CM (1995) Seizure thresholds in kindled animals are reduced by the pesticides lindane and endosulfan. Neurotoxicol Teratol 17:143–150. doi:10.1016/0892-0362(94)00065-L

    Article  CAS  PubMed  Google Scholar 

  20. Fischer W, Kittner H (1998) Influence of ethanol on the pentylenetetrazol-induced kindling in rats. J Neural Transm 105:1129–1142

    Article  CAS  PubMed  Google Scholar 

  21. Ohkawa H, Ohishi N, Yagi (1979) Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  22. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–73

    Article  CAS  PubMed  Google Scholar 

  23. Yorulmaz H, Seker FB, Demir G, Yalçın IE, Oztaş B (2013) The effects of zinc treatment on the blood-brain barrier permeability and brain element levels during convulsions. Biol Trace Elem Res 151:256–262. doi:10.1007/s12011-012-9546-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Takeda A, Itoh H, Hirate M, Oku N (2006) Region-specific loss of zinc in the brain in pentylenetetrazole-induced seizures and seizure susceptibility in zinc deficiency. Epilepsy Res 70:41–48. doi:10.1016/j.eplepsyres.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  25. Foresti ML, Arisi GM, Fernandes A, Tilelli CQ, Garcia-Cairasco N (2008) Chelatable zinc modulates excitability and seizure duration in the amygdala rapid kindling model. Epilepsy Res 79:166–172. doi:10.1016/j.eplepsyres.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  26. Rayalzadeh H, Nouri M, Ghasemi M, Kebriaeezadeh A, Mehr SE, Dehpour AR (2009) Effect of metal chelating agents on pentylenetetrazole-induced seizure threshold in cholestatic mice. Seizure 18:51–56. doi:10.1016/j.seizure.2008.06.004

    Article  Google Scholar 

  27. Qian J, Xu K, Yoo J, Chen TT, Andrews G, Noebels JL (2011) Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration. J Neurosci 31:97–104. doi:10.1523/JNEUROSCI. 5162-10.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lee JY, Cole TB, Palmiter RD, Koh JY (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J Neurosci 20:RC79

    CAS  PubMed  Google Scholar 

  29. Gupta YK, Malhotra J, George B, Kulkarni SK (1999) Methods and considerations for experimental evaluation of antiepileptic drugs. Indian J Physiol Pharmacol 43:25–43

    CAS  Google Scholar 

  30. Sowa KM, Kowalska M, Szlósarczyk M, Gołembiowska K, Opoka W, Bas B, Pilc A, Nowak G (2011) Chronic treatment with zinc and antidepressants induces enhancement of presynaptic/extracellular zinc concentration in the rat prefrontal cortex. Amino Acids 40:249–258. doi:10.1007/s00726-010-0641-0

    Article  Google Scholar 

  31. Papavasiliou PS, Miller ST (1983) Generalized seizures alter the cerebral and peripheral metabolism of essential metals in mice. Exp Neurol 82:223–236. doi:10.1016/0014-4886(83)90257-1

    Article  CAS  PubMed  Google Scholar 

  32. Szewczyk B, Sowa M, Czupryn A, Wierońska JM, Brański P, Sadlik K, Opoka W, Piekoszewski W, Smiałowsk M, Skangiel-Kramska J, Pilc A, Nowak G (2006) Increase in synaptic hippocampal zinc concentration following chronic but not acute zinc treatment in rats. Brain Res 1090:69–75. doi:10.1016/j.brainres.2006.03.035

    Article  CAS  PubMed  Google Scholar 

  33. Cavazos JE, Jones SM, Cross DJ (2004) Sprouting and synaptic reorganization in the subiculum and CA1 region of the hippocampus in acute and chronic models of partial-onset epilepsy. Neuroscience 126:677–688. doi:10.1016/j.neuroscience.2004.04.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sterman M, Shouse M, Fairchild M, Belsito O (1986) Kindled seizure induction alters and is altered by zinc absorption. Brain Res 383:382–386

    Article  CAS  Google Scholar 

  35. Gower-Winter SD, Levenson CW (2012) Zinc in the central nervous system: from molecules to behavior. Biofactors 38:186–193. doi:10.1002/biof.1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Levenson CW (2005) Zinc supplementation: neuroprotective or neurotoxic. Nutr Rev 63:122–125. doi:10.1111/j.1753-4887.2005.tb00130.x

    Article  PubMed  Google Scholar 

  37. Abbott LC, Nejad HH, Bottje WG, Hassan AS (1990) Glutathione levels in specific brain regions of genetically epileptic (tg/tg) mice. Brain Res Bull 52:629–631. doi:10.1016/0361-9230(90)90124-I

    Article  Google Scholar 

  38. Hurd RW, Wilder BJ, Street JJ, Sciscent BL (1981) Zinc binding by valproic acid. Neurosci Abstr 7:813

    Google Scholar 

  39. Niketic V, Ristic S, Saicic ZS, Spasic M, Buzadzic B, Stojkovic M (1995) Activities of antioxidant enzymes and formation of the glutathione adduct of hemoglobin (Hb ASSG) in epileptic patients with long-term antiepileptic therapy. Farmaco 50:811–813

    CAS  PubMed  Google Scholar 

  40. Yüksel A, Cengiz M, Seven M, Ulutin T (2000) Erythrocyte glutathione, glutathione peroxidase, superoxide dismutase and serum lipid peroxidation in epileptic children with valproate and carbamazepine monotherapy. J Basic Clin Pharmacol 11:73–81

    Google Scholar 

  41. Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157. doi:10.1016/j.ecoenv.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  42. Chaudhary S, Parvez S (2012) An in vitro approach to assess the neurotoxicity of valproic acid induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience 225:258–268. doi:10.1016/j.neuroscience.2012.08.060

    Article  CAS  PubMed  Google Scholar 

  43. Hamed SA, Abdellah MM, El-Melegy N (2004) Blood levels of trace elements, electrolytes, and oxidative stress/antioxidant systems in epileptic patients. J Pharmacol Sci 96:465–473

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Research grant from All India Institute of Medical Sciences, New Delhi, India, to JK.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatinder Katyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Katyal, J. & Gupta, Y.K. Low Dose Zinc Supplementation Beneficially Affects Seizure Development in Experimental Seizure Models in Rats. Biol Trace Elem Res 163, 208–216 (2015). https://doi.org/10.1007/s12011-014-0181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0181-7

Keywords

Navigation