Skip to main content
Log in

Differences of the electrical and nicotinic receptor stimulation-evoked liberation of norepinephrine from chicken sympathetic neurons in culture: Possible involvement of different pools of the transmitter

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We studied the release of [3H]norepinephrine from chicken sympathetic neurons in culture evoked by nicotinic and electrical stimulation with an intention to establish functional identity or nonidentity of the two stimuli in investigations of neurotransmitter release. Nicotinic stimulation evoked extracellular calcium dependent release of [3H]norepinephrine and the rise of intracellular calcium concentration. The release was completely blocked by nicotinic antagonists hexamethonium (100 μmol/l) and mecamylamine (10 μmol/l), and decreased by tetrodotoxin (0.3 μmol/l) and ω-conotoxin (0.1 μmol/l) to 17% and 27%, resp. The intracellular calcium response was decreased by nicotinic antagonists and tetrodotoxin, but not changed by ω-conotoxin. The electrical stimulation-evoked release was blocked by both tetrodotoxin and ω-conotoxin, and decreased by previous electrical, but not nicotinic, stimulation. The differential sensitivity to ω-conotoxin and tetrodotoxin, and the inability of nicotinic stimulation to decrease the liberation by following electrical stimulation may suggest the mobilization of different pools of the transmitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greene, L. A., and Rein, G. 1978. Release of norepinephrine from neurons in dissociated cell cultures of chick sympathetic ganglia via stimulation of nicotinic and muscarinic acetylcholine receptors. J. Neurochem. 30:579–586.

    PubMed  Google Scholar 

  2. Wakade, A. R., and Wakade, T. D. 1982. Relationship between membrane depolarization, calcium influx and norepinephrine release in sympathetic neurons maintained in culture. J. Pharmacol. Exp. Ther. 223:125–129.

    PubMed  Google Scholar 

  3. Wakade, A. R., Wakade, T. D., Bhave, S. V., and Malhotra, R. K. 1988. Demonstration of adrenergic and dopaminergic receptors in cultured sympathetic neurons—their coupling to cAMP but not to the transmitter release process. Neuroscience 27:1021–1028.

    PubMed  Google Scholar 

  4. Wakade, T. D., Bhave, S. V., Bhave, A., Przywara, D. A., and Wakade, A. R. 1990. Ca2+ mobilized by caffeine from the inositol 1,4,5-triphosphate-insensitive pool of Ca2+ in somatic regions of sympathetic neurons does not evoke (3H]norepinephrine release. J. Neurochem. 55:1806–1809.

    PubMed  Google Scholar 

  5. Böhm, S., Huck, S., Drobny, H., and Singer, E. A. 1991. Electrically evoked noradrenaline release from cultured chick sympathetic neurons: modulation via presynaptic 267-1 and lack of autoinhibition. Naunyn-Schmiedeberg's Arch. Pharmacol. 344:130–132.

    Google Scholar 

  6. Böhm, S., Huck, S., Drobny, H., and Singer, E. A. 1992. Pertussis toxin abolishes the inhibition of Ca2+ currents and of noradrenaline release via 267-2 in chick sympathetic neurons. Naunyn-Schmiedeberg's Arch. Pharmacol. 345:606–609.

    Google Scholar 

  7. Przywara, D. A., Bhave, S. V., Chowdhury, P. S., Wakade, T. D., and Wakade, A. R. 1993. Sites of transmitter release and relation to intracellular Ca2+ in cultured sympathetic neurons. Neuroscience 52:973–986.

    PubMed  Google Scholar 

  8. Grinvald, A., Frostig, R. D., Lieke, E., and Hildesheim, R. 1988. Optical imaging of neuronal activity. Physiol. Rev. 68:1285–1366.

    PubMed  Google Scholar 

  9. Feldberg, W., and Gaddum, J. H. 1934. The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. 81:305–319.

    Google Scholar 

  10. Wakade, A. R., and Wakade, T. D. 1988. Comparison of transmitter release properties of embryonic sympathetic neurons growing in vivo and in vitro. Neuroscience 27:1007–1019.

    PubMed  Google Scholar 

  11. Doležal, V., Schobert, A., Heldt, R., and Hertting, G. 1994. Presynaptic 267-3 inhibit calcium influx in terminals of chicken sympathetic neurons and noradrenaline release evoked by nicotinic stimulation. Neurosci. Lett. 180:63–66.

    PubMed  Google Scholar 

  12. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

    PubMed  Google Scholar 

  13. Bocchini, V., and Angeletti, P. U. 1968. The nerve growth factor: Purification as a 30,000 molecular weight protein. Proc. Natl. Acad. Sci. USA 64:787–794.

    Google Scholar 

  14. Katz, B. 1969. The Release of Neural Transmitter Substances. Liverpool University Press, Liverpool, United Kingdom.

    Google Scholar 

  15. Augustine, G. J., Adler, E. M., and Charlton, M. P. 1991. The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann. N. Y. Acad. Sci. 635:365–381.

    PubMed  Google Scholar 

  16. Vijayaraghavan, S., Pugh, P. C., Zhang, Z-W., Rathouz, M. M., and Berg, D. K. 1992. Nicotinic receptors that bind α-bungarotoxin on neurons raise intracellular free Ca2+. Neuron 8:353–362.

    PubMed  Google Scholar 

  17. Gould, J., Reeve, H. L., Vaughan, P. F. T., and Peers, C. 1992. Nicotinic acetylcholine receptors in human neuroblastoma (SH-SY5Y) cells. Neurosci. Lett. 145:201–204.

    PubMed  Google Scholar 

  18. Adams, D. J., and Nutter, T. J. 1992. Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons. J. Physiol. (Paris) 86:67–76.

    Google Scholar 

  19. Vernino, S., Amador, M., Luetje, C. W., Patrick, J., and Dani, J. A. 1992. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptor. Neuron 8:127–134.

    PubMed  Google Scholar 

  20. Mulle, C., Choquet, D., Korn, H., and Changeux, J-P. 1992. Calcium influx through nicotinic receptor in rat central neurons: its relevance to cellular regulation. Neuron 8:135–143.

    PubMed  Google Scholar 

  21. Nowycky, M. C., Fox, A. P., and Tsien, R. W. 1985. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443.

    PubMed  Google Scholar 

  22. Hirning, L. D., Fox, A. P., McCleskey, E. W., Olivera, B. M., Thayer, S. A., Miller, R. J., Tsien, R. W. 1988. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61.

    PubMed  Google Scholar 

  23. Suetake, K., Kojima, H., Inanaga, K., and Koketsu, K. 1981. Catecholamine is released from non-synaptic cell-soma membrane: histochemical evidence in bullfrog sympathetic ganglion cells. Brain Res. 205:436–440.

    PubMed  Google Scholar 

  24. Belhage B., Rehder, B., Hansen, G. H., Kater, S. B., and Schousboe, A. 1992. [3H]d-aspartate release from cerebellar granule neurons is differentially regulated by glutamate-stimulation and K+-stimulation. J. Neurosci. Res. 33:436–444.

    PubMed  Google Scholar 

  25. Fariñas I., Solsona, C., and Marsal, J. 1992. Omega-conotoxin differentially blocks acetylcholine and adenosine triphosphate release from Torpedo synaptosomes. Neuroscience 47:641–648.

    PubMed  Google Scholar 

  26. Prado, M. A. M., Gomez, M. V., and Collier, B. 1992. Mobilization of the readily releasable pool of acetylcholine from a sympathetic ganglion by tityustoxin in the presence of vesamicol. J. Neurochem. 59:544–552.

    PubMed  Google Scholar 

  27. Prado, M. A. M., Gomez, M. V., and Collier, B. 1993. Mobilization of a vesamicol-insensitive pool of acetylcholine from a sympathetic ganglion by ouabain. J. Neurochem. 61:45–56.

    PubMed  Google Scholar 

  28. Troger, J., Kirchmair, R., Marksteiner, J., Seidl, C. V., Fischer-Colbrie, R., Saria, A., and Winkler, H. 1994. Release of secretoneurin and noradrenaline from hypothalamic slices and its differential inhibition by calcium channel blockers. Naunyn-Schmiedeberg's Arch. Pharmacol. 349:349–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolezal, V., Schobert, A. & Hertting, G. Differences of the electrical and nicotinic receptor stimulation-evoked liberation of norepinephrine from chicken sympathetic neurons in culture: Possible involvement of different pools of the transmitter. Neurochem Res 20, 261–267 (1995). https://doi.org/10.1007/BF00969541

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969541

Key Words

Navigation