Skip to main content
Log in

Dose-dependent dual effect of corticosterone on cerebral 5-HT metabolism

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The action of 1.0 and 10.0 mg/kg (i.p.) of corticosterone on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents and on serotonin turnover, measured by an MAO-inhibitor method, was studied at 30 and 120 min after administration. A 1.0 mg/kg dose of corticosterone increased the serotonin content and turnover in the hypothalamus and mesencephalon 30 min after administration; however, it was ineffective on dorsal hippocampus and frontal and parietal cortex. 5-HIAA content did not change significantly in any of the brain areas studied. A 10.0 mg/kg dose of corticosterone decreased the serotonin content and turnover in the hypothalamus and mesencephalon; it was ineffective in other brain areas investigated. 5-HIAA content significantly decreased in the hypothalamus while it increased in the mesencephalon and dorsal hippocampus. In the parietal and frontal cortex, 5-HIAA content did not change following administration of 10.0 mg/kg of corticosterone. At 120 min after corticosterone administration, neither 5-HT content and turnover nor 5-HIAA content showed any change in the brain areas investigated. The results suggest that corticosteroids might change the activity of the brain serotoninergic system in a dose- and time-dependent manner, and in this way the serotoninergic system might play an important role in mediation of the corticosteroid effect exerted on brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vermes, I., Telegdy, G., andLissák, K. 1973. Correlation between hypothalamic serotonin content and adrenal function during acute stress; effect of adrenal corticosteroids on hypothalamic serotonin content. Acta Physiol.Acad. Sci. Hung. 43:33–42.

    Google Scholar 

  2. Vernikos-Danellis, J., Berger, P., andBarchas, J. D. 1973. Brain serotonin and pituitary-adrenal function. Prog.Brain Res. 39:301–309.

    Google Scholar 

  3. Kovács, G. L., Kishonti, J., Lissák, J., andTelegdy, G. 1976. Inhibitory action of midbrain raphe stimulation on stress-induced elevation of plasma corticosterone level in rats.Neurosci. Lett. 3:305–310.

    Google Scholar 

  4. Telegdy, G., andVermes, I. 1975. Effect of adrenocortical hormones on activity of the serotoninergic system in limbic structures in rats.Neuroendocrinology 18:16–26.

    Google Scholar 

  5. Ulrich, R., Yuwiler, A. andGeller, E. 1975. Effects of hydrocortisone on biogenic amine levels in the hypothalamus.Neuroendocrinology 19:259–268.

    Google Scholar 

  6. Scapagnini, U., Preziosi, P., andDeSchaepdryver, A 1969. Influence of restraint stress, corticosterone and betamethasone on brain amine levels.Pharmacol. Res. Commun. 1:63–69.

    Google Scholar 

  7. Curzon, G. 1971. Effect of adrenal hormones and stress on brain serotonin.Am. J. Clin. Nutr. 24:830–834.

    Google Scholar 

  8. Shah, N. S., Stevens, S., andHimwich, H. E. 1968. Effect of chronic administration of cortisone on the tryptophan induced changes in amine levels in the rat brain.Arch. Int. Pharmacodyn. Ther. 171:285–295.

    Google Scholar 

  9. McKennee, C. T., Timiras, P. S., andQuay, W. B. 1966. Concentrations of 5-hydroxytryptamine in rat brain and pineal after adrenalectomy and cortisol administration.Neuroendocrinology 1:251–256.

    Google Scholar 

  10. Kovács, G. L., Telegdy, G. andLissák, K. 1975. Dose-dependent dual effect of corticosterone on hypothalamic serotonin content in rats.Acta Physiol. Acad. Sci. Hung. 46:79–81.

    Google Scholar 

  11. Kovács, G. L., Telegdy, G., andLissák, K. 1976. 5-hydroxytryptamine and the mediation of pituitary-adrenocortical hormones in the extinction of active avoidance behaviour.Psychoneuroendocrinology 1:219–231.

    Google Scholar 

  12. Telegdy, G., Kovács, G. L., andLissák, K. 1975. Role of serotonin in corticoster-one-induced behavioral action.Acta Endocr. (Copenhagen), Suppl. 199, 188.

    Google Scholar 

  13. Telegdy, G., Kovács, G. L., andVermes, I. 1976. Action of corticosteroid on brain serotonin metabolism in correlation with avoidance behaviour in rats.In Lissák, K. (ed.), Recent Development of Neurobiology in Hungary, Vol. VI (in press).

  14. Kovács, G. L., Telegdy, G., andLissák, K. 1975. Dose-dependent action of corticosteroids on brain serotonin content and on passive avoidance behavior.Horm. Behav. (in press).

  15. Andén, N. E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., andUngerstedt, U. 1966. Ascending monoamine neurons to the telencephalon and diencephalon.Acta Physiol. Scand. 67:313–326.

    Google Scholar 

  16. Fuxe, K. 1965. Evidence for the existence of monoamine neurons in the central nervous system. III. The monoamine nerve terminal.Z. Zellforsch. 65:573–596.

    Google Scholar 

  17. Fuxe, K. 1965. Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system.Acta Physiol. Scand., 64 Suppl., 247:37–85.

    Google Scholar 

  18. Fuxe, K., Hökfelt, T., andUngerstedt, U.. 1968. Localization of indolealkylamines in CNS. Pages 235–251,in Garattini, S., andShore, P. A. (eds.), Advances in Pharmacology, Vol. 6, Part. A., Academic Press, New York.

    Google Scholar 

  19. Fuxe, K., Hökfelt, T., andUngerstedt, U. 1969. Distribution of monoamines in the mammalian central nervous system by histochemical studies. Pages 10–22,in Hooper, G. (ed.), Metabolism of Amines in the Brain, Macmillan, London.

    Google Scholar 

  20. Bobillier, P., Pettijean, F., Salvert, D., Ligier, M., andSequin, S. 1975. Differential projections of the nucleus raphe dorsalis and nucleus centralis as revealed by autoradiography.Brain Res. 85:205–210.

    Google Scholar 

  21. Geyer, M. A., Puerto, A., Dawsey, W. J., Knopp, S., Bullard, W. P., andMandell, A. J. 1976. Histologic and enzymatic studies of the mesolimbic and mesostriatal serotoninergic pathways.Brain Res. 106:241–256.

    Google Scholar 

  22. Pierce, E. T., Foot, W. E., andHobson, J. A. 1976. The efferent connection of the nucleus raphe dorsalis.Brain Res. 107:137–144.

    Google Scholar 

  23. Snyder, S. H., Axelrod, J., andZweig, M. 1965. A sensitive and specific fluorescence assay for tissue serotonin.Biochem. Pharmacol. 14:831–835.

    Google Scholar 

  24. Tozer, T. N., Neff, N. H., andBrodie, B. B. 1966. Application of steady-state kinetics to the synthesis rate and turnover time of serotonin in the brain of normal and reserpine-treated rats.J. Pharmacol. Exp. Ther. 153:177–182.

    Google Scholar 

  25. Cox, R. H., andPerhach, J. L. 1973. A sensitive, rapid and simple method for the simultaneous spectrophotometric determinations of norepinephrine, dopamine, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in discrete areas of brain.J. Neurochem. 20:1777–1780.

    Google Scholar 

  26. Zenker, N., andBernstein, E. 1958. The estimation of small amounts of corticosterone in rat plasma.J. Biol. Chem. 231:695–701.

    Google Scholar 

  27. Purves, H. D., andSirett, N. E. 1965. Assay of corticotropin in dexamethason-treated rats.Endocrinology 77:366–374.

    Google Scholar 

  28. Finney, D. J. 1964. Statistical Methods in Biological Assay, Charles Griffin, London.

    Google Scholar 

  29. Azmitia, E. C., andMcEwen, B. S. 1969. Corticosterone regulation of tryptophan hydroxylase in midbrain of the rat.Science 166:1274–1276.

    Google Scholar 

  30. Azmitia, E. C., andMcEwen, B. S. 1974. Adrenocortical influence on rat brain tryptophan hydroxylase activity.Brain Res. 78:291–302.

    Google Scholar 

  31. Azmitia, E. C., Algeri, S., andCosta, E. 1970. In vivo conversion of H3-tryptophan into H3-serotonin in brain areas of adrenalectomized rats.Science 169:201–203.

    Google Scholar 

  32. Neckers, L., andSze, P. Y. 1975. Regulation of 5-hydroxytryptamine metabolism in mouse brain by adrenal glucocorticoids.Brain Res. 93:123–132.

    Google Scholar 

  33. Telegdy, G., andVermes, I. 1976. Changes induced by stress in the activity of the serotoninergic system in limbic brain structures. Pages 145–153,in Usdin, E., Kvetnansky, R., andKopin, I. J. (eds.), Catecholamines and Stress, Pergamon Press, Oxford.

    Google Scholar 

  34. Fuxe, K., Schubert, J., Hökfelt, T., andJonsson, G. 1974. Some aspects of the interrelationship between central 5-hydroxytryptamine neurons and hormones. Pages 67–74,in Costa, E., Gessa, G. L., andSandler, M. (eds.), Serotonin-New Vistas, Advanced in Biochemical Psychopharmacology, Raven Press, New York.

    Google Scholar 

  35. Feldstein, A., andSidel, C. M. 1968. In vivo and in vitro 5-HTP-14C and serotonin-14C metabolism in rat brain as a function of time of MAO inhibitor administration.Commun. Behav. Biol. 1A:189.

    Google Scholar 

  36. Aghajanian, G. K., Rosencrans, J. A., andSheard, M. H. 1967. Serotonin: release in the forebrain by stimulation of midbrain raphe.Science 156:402–403.

    Google Scholar 

  37. Kostowski, W., Giacalone, E., Garattini, S., andValzelli, L. 1969, Electrical stimulation of midbrain raphe: biochemical, behavioral and bioelectric effects.Eur. J. Pharmacol. 7:170–175.

    Google Scholar 

  38. Descarries, L., Beaudet, A., andWatkins, K. C. 1975. Serotonin nerve terminals in adult rat neocortex.Brain Res. 100:563–588.

    Google Scholar 

  39. Fuxe, K., Hökfelt, T., Jonsson, G., Levine, S., Lidbrink, P., andLöfström, A. 1973. Brain and Pituitary-adrenal interactions. Studies on central monoamine neurons. Pages 239–269,in Brodish, A., andRedgate, E. S. (eds.), Brain-Pituitary-Adrenal Interrelationship, Karger, Basel.

    Google Scholar 

  40. Telegdy, G., andVermes, I. 1973. The role of serotonin in the regulation of the hypophysis-adrenal system. Pages 332–334,in Brodish, A., andRedgate, E. S. (eds.), Brain-Pituitary-Adrenal Interrelationship, Karger, Basel.

    Google Scholar 

  41. Dallman, M. F., andJones, M. T. 1973. Corticosteroid feed-back control of stress-induced ACTH secretion. Pages 176–196,in Brodish, A., andRedgate, E. S. (eds.), Brain-Pituitary-Adrenal Interrelationship, Karger, Basel.

    Google Scholar 

  42. Kovács, G. L., andTelegdy, G. 1976. Indoleamines and behaviour. The possible role of serotoninergic mechanisms in the pituitary-adrenocortical hormone-induced behavioral action.In Lissák, K. (ed.), Recent Development of Neurobiology in Hungary, Vol. VII, Akadémiai Kiadó, Budapest (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, G.L., Kishonti, J., Lissák, K. et al. Dose-dependent dual effect of corticosterone on cerebral 5-HT metabolism. Neurochem Res 2, 311–322 (1977). https://doi.org/10.1007/BF00969361

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969361

Keywords

Navigation