Skip to main content
Log in

Regional localization of [14C]mescaline in rabbit brain after intraventricular administration

Effects of chlorpromazine and iproniazid pretreatment

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Albino rabbits of either sex were anesthetized, and a cannula was implanted permanently into the lateral ventricle. About 1 week later, the distribution of [14C]mescaline and its deaminated metabolite, [14C]trimethoxyphenylacetic acid ([14C]TMPA) in 12 brain regions was examined at 15, 60, and 180 min after the intraventricular injection of [14C]mescaline (0.5 μmol in 0.05 ml saline).14C-radioactivity was rapidly distributed in all regions, reaching peak levels within 15 min. The spinal cord, superior colliculus, pons, hypothalamus, caudate, medulla oblongata, and inferior colliculus contained 23–57 nmol/g of mescaline; the thalamus, tegmentum, and cerebellum, 12–15 nmol/g; and the cerebrum and hippocampus, less than 10 nmol/g; the levels of [14C]TMPA ranged from 0.5 to 5 nmol/g. The levels of [14C]mescaline and of [14]TMPA in all brain areas were considerably decreased 180 min after its injection. Pretreatment with chlorpromazine (15 mg/kg, i.p., 30 min) lowered [14C]mescaline concentrations in the hippocampus, caudate, thalamus, and cerebrum and elevated them in the spinal cord, medulla oblongata, pons, and tegmentum; [14C]TMPA levels as the percentage of total radioactivity were not affected. Pretreatment with iproniazid (150 mg/kg, i.p., 18 h), on the other hand, uniformly reduced the TMPA levels in all brain areas, with the resultant increases in mescaline levels. The CPZ-effect in lowering the mescaline concentrations in the areas belonging to the limbic system may have significance in explaining its antihallucinogenic effect in humans and its ability to block the altered behavior induced by the latter drug in laboratory animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shah, N. S., Alpers, H. S., andHimwich, H. E. 1972. Regional localization of 3,4-dimethoxyphenylethylamine-14C (DMPEA-14C) in rabbit brain: Effects of reserpine and iproniazid pretreatment.J. Pharmacol. Exp. Ther. 180:144–150.

    Google Scholar 

  2. Ernst, A. M. 1962. Phenomena of the hypokinetic rigid type caused by 0-methylation of dopamine in the para-position.Nature (London) 193:178–179.

    Google Scholar 

  3. Ernst, A. M. 1965. Relation between the structure of certain methoxyphenylethylamine derivatives and the occurrence of a hypokinetic rigid syndrome.Psychopharmacologia 7:383–390.

    Google Scholar 

  4. Barbeau, A., Singh, P., andJoubert, M. 1966. Effect of 3,4-dimethoxyphenylethylamine injections on catecholamine metabolism in rats and monkeys.Life Sci. 5:757–767.

    Google Scholar 

  5. Jacobsen, E. 1963. The clinical pharmacology of the hallucinogens.Clin. Pharmacol. Ther. 4:480–503.

    Google Scholar 

  6. Charalampous, K. D., Orenzo, A., Walker, K. E., andKinross-Wright, J. 1964. Metabolic fate of β-(3,4,5-trimethoxyphenyl)-ethylamine (mescaline) in humans: Isolation and identification of 3,4,5-trimethoxyphenylacetic acid.J. Pharmacol. Exp. Ther. 145:242–246.

    Google Scholar 

  7. Charalampous, K. D., Walker, K. E., andKinross-Wright, J. 1966. Metabolic fate of mescaline in man.Psychopharmacologia 9:48–63.

    Google Scholar 

  8. Musacchio, J. M., andGoldstein, M. 1967. The metabolism of mescaline-14C in rats.Biochem. Pharmacol. 16:963–970.

    Google Scholar 

  9. Winter, J. C. 1971. Tolerance to a behavioral effect of lysergic acid diethylamide and cross-tolerance to mescaline in the rat: Absence of a metabolic component.J. Pharmacol. Exp. Ther. 178:625–630.

    Google Scholar 

  10. Dill, R. E. 1972. Mescaline: Receptor interaction in the rat striatum.Arch. Int. Pharmacodyn. Ther. 195:320–329.

    Google Scholar 

  11. Korr, H., Lehr, E., Seiler, N., andWerner, G. 1969. Autoradiographische Untersuchungen zur Verteilung von Mescalin und dessen Einflub auf die zentrale Erregung bei Mausen.Psychopharmacologia (Berlin) 16:183–200.

    Google Scholar 

  12. Shah, N. S., andHimwich, H. E. 1971: Study with mescaline-8-C14 in mice: Effect of amine oxidase inhibitors on metabolism.Neuropharmacology 10:547–555.

    Google Scholar 

  13. Shah, N. S., Neely, A. E., Shah, K. R., andLawrence, R. S. 1973. Placental transfer and tissue distribution of mescaline-14C in the mouse.J. Pharmacol. Exp. Ther. 184:489–493.

    Google Scholar 

  14. Shah, N. S., Shah, K. R., Lawrence, R. S., andNeely, A. E. 1973. Effects of chlorpromazine and haloperidol on the disposition of mescaline-14C in mice.J. Pharmacol. Exp. Ther. 186:297–304.

    Google Scholar 

  15. Shah, N. S., Shah, K. R., Lawrence, R. S., andNeely, A. E. 1975. The uptake and distribution of14C-mescaline in different organs of developing rat.Drug Metab. Dispos. 3:74–79.

    Google Scholar 

  16. Sawyer, C. H., Everett, J. W., andGreen, J. D. 1954. The rabbit diencephalon in stereotaxic coordinates.J. Comp. Neurol. 101:801–824.

    Google Scholar 

  17. Bray, G. A. 1960. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter.Anal. Biochem. 1:279–285.

    Google Scholar 

  18. Iversen, L. L. 1965. The uptake of catecholamines at high perfusion concentrations in the rat isolated heart: A novel catecholamine uptake process.Br. J. Pharmacol. 25:18–33.

    Google Scholar 

  19. Glowinski, J., andIversen, L. L. 1966. Regional studies of catecholamines in the rat brain. I. The disposition of (3H) norepinephrine, (3H) dopamine and (3H) DOPA in various regions of the brain.J. Neurochem. 13:655–669.

    Google Scholar 

  20. Palaic, D., Page, I. H., andKhairallah, P. A. 1967. Uptake and metabolism of (14C)-serotonin in rat brain.J. Neurochem. 14:63–69.

    Google Scholar 

  21. Freedman, D. X., Gottlieb, R., andLovell, R. A. 1970. Psychotomimetic drugs and brain 5-hydroxytryptamine metabolism.Biochem. Pharmacol. 19:1181–1188.

    Google Scholar 

  22. Stolk, J. M., Barchas, J. D., Goldstein, M., Boggan, W., andFreedman, D. X. 1974. A comparison of psychotomimetic drug effects on rat brain norepinephrine metabolism.J. Pharmacol. Exp. Ther. 189:42–50.

    Google Scholar 

  23. Barchas, J. D., andFreedman, D. X. 1963. Brain amines: Response to physiological stress.Biochem. Pharmacol. 12:1232–1235.

    Google Scholar 

  24. Zeller, E. A., Barsky, J., Berman, E. R., Charkas, M. S., andFouts, J. R. 1958. Degradation of mescaline by amine oxidases.J. Pharmacol. Exp. Ther. 124:282–289.

    Google Scholar 

  25. Huszti, A., andBorsy, J. 1966. Differences between amine oxidase deaminating mescaline and the structurally related 3,4-dimethoxyphenylethylamine.Biochem. Pharmacol. 15:475–480.

    Google Scholar 

  26. Seiler, N., andDemisch, L. 1971. Oxidative metabolism of mescaline in the Central Nervous System. II. Oxidative Deamination of mescaline and 2,3,4-trimethoxy-β-Phenylethylamine by different mouse brain areas in vitro.Biochem. Pharmacol. 20:2485–2493.

    Google Scholar 

  27. Shah, N. S., andHimwich, H. E. 1971. A comparative study of mescaline and 3,4-dimethoxyphenylethylamine in isolated brain mitochondria and brain homogenate.Brain Res. 34:163–170.

    Google Scholar 

  28. Shah, N. S. 1971. A comparative study on the metabolism of 3,4-dimethoxyphenylethylamine-C14 and mescaline-C14 by rabbit, mouse and rat brain homogenates.Arch. Int. Pharmacodyn. Ther. 193:357–361.

    Google Scholar 

  29. McCaman, R. E., McCaman, M. W., Hunt, J. M., andSmith, M. S. 1965. Microdetermination of monoamine oxidase and 5-hydroxytryptophan decarboxylase activities in nervous tissue.J. Neurochem. 12:15–23.

    Google Scholar 

  30. Johnston, J. P. 1968. Some observations upon a new inhibitor of monoamine oxidase in brain tissue.Biochem. Pharmacol. 17:1285–1297.

    Google Scholar 

  31. Hidaka, H., Hartman, B. K., andUdenfriend, S. 1971. Comparison of mitochondrial monoamine oxidase from bovine brain and liver using antibody to purified liver monoamine oxidase.Arch. Biochem. Biophys. 147:805–809.

    Google Scholar 

  32. Youdim, M. B. H., Collins, G. G. S., Sandler, M., Bevan Jones, A. B., Pare, C. M. B., andNicholson, W. J. 1972. Human brain monoamine oxidase: Multiple forms and selective inhibitors.Nature 236:225–228.

    Google Scholar 

  33. McCauley, R., andRacker, E. 1973. Separation of two monoamine oxidases from bovine brain.Mol. Cell. Biochem. 1:73–81.

    Google Scholar 

  34. Youdim, M. B. H. 1973. Multiple forms of mitochondrial monoamine oxidase.Br. Med. Bull. 29:120–122.

    Google Scholar 

  35. Yang, H.-Y. T., andNeff, N. H. 1973. β-Phenylethylamine: A specific substrate for type B monoamine oxidase of brain.J. Pharmacol. Exp. Ther. 187:365–371.

    Google Scholar 

  36. Neff, N. H., Yang, H.-Y. T., andFuentes, J. A. 1974. The use of selective monoamine oxidase inhibitor drugs to modify amine metabolism in brain. Pages 49–57,in Usdin, E. (ed.), Neuropharmacology of Monoamines and Their Regulatory Enzymes, Advances in Biochemical Psychopharmacology, Vol. 12, Raven Press, New York.

    Google Scholar 

  37. Wase, A. W., Christensen, J., andPolley, E. 1956. The accumulation of (S35) chlorpromazine in brain.Arch. Neurol. Psychiatry 75:54–56.

    Google Scholar 

  38. Cassano, G. B., Sjostrand, S. E., andHansson, E. 1965. Distribution of (35S)-chlorpromazine in cat brain.Arch. Int. Pharmacodyn. Ther. 156:48–58.

    Google Scholar 

  39. Idänpään-Heikkila, J. E., Vapaatalo, H. I., andNeuvonen, P. J. 1968. Effect of N-hydroxyethylpromethazine (Aprobit) on the distribution of (35S)-chlorpromazine studied by autoradiography in cats and mice.Psychopharmacologia 13:1–13.

    Google Scholar 

  40. Kwant, W. O., andSeeman, P. 1969. The membrane concentration of a local anesthetic (Chlorpromazine).Biochem. Biophys. Acta 183:530–543.

    Google Scholar 

  41. Spano, P. F., Neff, N. H., Macko, E., andCosta, E. 1970. Efflux of chlorpromazine and trifluoperazine from the rat brain.J. Pharmacol. Exp. Ther. 174:20–26.

    Google Scholar 

  42. Eckert, H., andHopf, A. 1970. Autoradiographic studies on the distribution of psychoactive drugs in the rat brain. IV. (14C)-Thioridazine.Int. Pharmacopsychiatry 4:98–116.

    Google Scholar 

  43. West, N. R., andVogel, W. H. 1975. Absorption, distribution and excretion of trifluoperazine in rats.Arch. Int. Pharmacodyn. 215:318–335.

    Google Scholar 

  44. Kawashima, K., Wurzburger, R. J., andSpector, S. 1975. Correlation of chlorpromazine levels in rat brain and serum with its hypothermic effect.Psychopharmacol. Commun. 1:431–436.

    Google Scholar 

  45. Kwant, W. O., andSeeman, P. 1971. Chlorpromazine adsorption to brain regions.Biochem. Pharmacol. 20:2089–2091.

    Google Scholar 

  46. Shah, N. S., Jacobs, J. R., Jones, J. T., andHedden, M. P. 1975. Interaction of mescaline with phenothiazines: Effect on behavior, body temperature, and tissue levels of hallucinogen in mice.Biol. Psychiatry 10:561–573.

    Google Scholar 

  47. Shah, N. S. 1976. Influence of psychotropic drugs and β-diethylaminoethyldiphenylpropylacetate (SKF 525-A) on mescaline-induced behavior and on tissue levels of mescaline in mice.Biochem. Pharmacol. 25:591–597.

    Google Scholar 

  48. Ungerstedt, U. 1971: Stereotaxic mapping of the monoamine pathways in the rat brain.Acta. Physiol. Scand., Suppl. 367:1–48.

    Google Scholar 

  49. Stevens, J. R. 1973. An anatomy of schizophrenia?Arch. Gen. Psychiatry 29:177–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, N.S., Dulati, O.D., Powell, D.A. et al. Regional localization of [14C]mescaline in rabbit brain after intraventricular administration. Neurochem Res 2, 265–279 (1977). https://doi.org/10.1007/BF00969357

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969357

Keywords

Navigation