Skip to main content
Log in

Inhibition of transporter mediated γ-aminobutyric acid (GABA) release by SKF 89976-A, a GABA uptake inhibitor, studied in a primary neuronal culture from chicken

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of SKF 89976-A, a lipophilic non-substrate inhibitor of the γ-aminobutyric acid (GABA) transporter, on the release of radioactive GABA andd-aspartate has been studied. Neuronal cultures from 8 day old chick embryos, grown for six days, served as a model. The cultures were incubated with [3H]d-aspartate and [14C] GABA with the subsequent addition of high or low concentrations of SKF 89976-A. Finally the cultures were exposed to differently composed media for either 30 or 300 seconds. The release was quantified, using liquid scintillation counting. The efflux of [3H]d-aspartate and [14C] GABA was increased by [K+] and time, and a minimum value was obtained at [Ca2+] 1.05 mM. The release of both [3H]d-aspartate and [14C] GABA was inhibited by SKF 89976-A. The obtained results indicate that transporter mediated processes are the major mechanisms of transmitter release in the investigated model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levi, G., and Raiteri, M. 1974. Exchange of neurotransmitter amino acid at nerve endings can simulate high affinity uptake. Nature 250:735–737.

    PubMed  Google Scholar 

  2. Martin, D. L. 1976. Carrier-mediated transport and removal of GABA from synaptic regions, Pages 347–386,in Roberts, E., Chase, T. N. and Tower D. B., (eds), GABA in Nervous System Function. Raven Press, NY.

    Google Scholar 

  3. Fagg, G. E., and Foster, A. C. 1983. Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9:701–719.

    PubMed  Google Scholar 

  4. Kanner, B. I., and Schuldiner, S. 1987. Mechanisms of transport and storage of neurotransmitters. CRC Critical Rev. Biochem. 22:1–38.

    Google Scholar 

  5. Danbolt, N. C., Pines, G. and Kanner, B. I. 1990. Purification and reconstitution of the sodium-and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29:6734–6740.

    PubMed  Google Scholar 

  6. Radian, R., and Kanner, B. I. 1985. Reconstitution and purification of the sodium- and chloride-coupled γ-aminobutyric acid transporter from rat brain. J. Biol. Chem. 260:11865–11895.

    Google Scholar 

  7. Radian, R., Bendahan, A., and Kanner, B. I. 1986. Purification and identification of the functional sodium- and chloride-coupled γ-aminobutyric acid transport glycoprotein from rat brain. J. Biol. Chem. 261:15437–15441.

    PubMed  Google Scholar 

  8. Gottlieb, D. I. 1988. GABAergic neurons. Sci. Am. 258:38–45.

    Google Scholar 

  9. Cotman, C. W., and Iversen, L. L. 1987. Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–264.

    Google Scholar 

  10. Nicholls, D. G. 1989. Release of glutamate, aspartate and γ-aminobutyric acid from isolated nerve terminals. J. Neurochem. 52:331–341.

    PubMed  Google Scholar 

  11. Haycock, J. W., Levy, W. B., Denner, L. A., and Cotman, C. W. 1978. Effects of elevated [K+]0 on the release of neurotransmitters from cortical synaptosomes: Efflux or secretion? J. Neurochem. 30:1113–1125.

    PubMed  Google Scholar 

  12. Nelson, M. T., and Blaustein, M. P. 1982. GABA efflux from synaptosomes: Effects of membrane potential, and external GABA and cations. J. Membrane Biol. 69:213–223.

    Google Scholar 

  13. Lidén, E., Karlsson, L., and Sellström, Å. 1987. Is the concentration of γ-aminobutyric acid in the nerve terminal regulated via product inhibition? Neurochem. Res. 12:489–493.

    PubMed  Google Scholar 

  14. Sihra, T. S., and Nicholls, D. G. 1987. GABA can be released exocytotically from guinea-pig cerebrocortical synaptosomes. J. Neurochem. 49:261–167.

    PubMed  Google Scholar 

  15. Turner, T. J., and Goldin, S. M. 1989. Multiple components of synaptosomal [3H] γ-aminobutyric acid release by a rapid superfusion system. Biochemistry 25:586–593.

    Google Scholar 

  16. Lewin, L. E., Mattsson, M.-O., and Sellström, Å. 1989. The reversibility of the GABA transporter studied in a P2-fraction and in a primary neuronal culture. Abstract from “4th Nordic Neuroscience Symposium, Marstrand, Sweden, August 15–19 1989”

  17. Sellström, Å., and Rassin, D. K. 1991. On the inhibition of GABA release from a preparation of rat brain nerve endings by SKF 89976-A, a GABA uptake inhibitor. Neurosci. Lett. 127:189–192.

    PubMed  Google Scholar 

  18. Larsson, O. M., Falch, E., Krogsgaard-Larsen, P., and Schousboe, A. 1988. Kinetic characterization of inhibition of γ-aminobutyric acid uptake into cultured neurons and astrocytes by 4,4-diphenyl-3-butenyl derivatives of nipecotic acid and guvacine. J. Neurochem. 50:818–823.

    PubMed  Google Scholar 

  19. Pettman, B., Louis, J. C., and Sensenbrenner, M. 1979. Morphological and biochemical maturation of neurones cultured in the absence of glial cells. Nature 281:378–380.

    PubMed  Google Scholar 

  20. Thampy, K. G., Sauls, C. D., Brinkley, B. R., and Barnes, Jr. E. M. 1983. Neurons from chick embryo cerebrum: ultrastructural and biochemical developmentin vitro. Dev. Brain Res. 8:101–110.

    Google Scholar 

  21. Langui, D., Sarhan, S., Devilliers, G., Pettmann, B., Delaunoy, J. P., Seiler, N., and Sensenbrenner, M. 1988. Synapse formation and development of neurotransmitter functions in neuronal cells from chick brain cultured in a serum-free, defined medium. Int. J. Dev. Neurosci. 6:137–147.

    PubMed  Google Scholar 

  22. Mangoura, D., and Vernadakis, A. 1988. GABAergic neurons in cultures derived from three-, six- or eight-day-old chick embryo: a biochemical and immunocytochemical study. Dev. Brain Res. 40:25–35.

    Google Scholar 

  23. Tunnicliff, G., Cho, Y. D., Blackwell, N., Martin, R. O., and Wood, J. D. 1973. The uptake of γ-aminobutyrate by organotypic cultures of chick spinal cord. Biochem. J. 134:27–32.

    PubMed  Google Scholar 

  24. Cho, Y. D., Tunnicliff, G., and Martin, R. O. 1974. The uptake process of γ-aminobutyric acid in cultures of developing chick cerebrum. Exp. Neurol. 44:306–312.

    PubMed  Google Scholar 

  25. Farb, D. H., Berg, D. K., and Fischbach, G. D. 1979. Uptake and release of [3H]-γ-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture. J. Cell Biol. 80:651–661.

    PubMed  Google Scholar 

  26. Jong, Y.-J., Thampy, K. G., and Barnes, Jr. E. M. 1986. Ontogeny of GABAergic neurons in chick brain: studies in vivo and in vitro. Dev. Brain Res. 25:83–90.

    Google Scholar 

  27. Lewin, L. E., Mattsson, M.-O., Rassin, D. K., and Sellström, Å. 1991. On the activity of γ-aminobutyric acid and glutamate transporters in neuronal cultures from the chick embryo. Neurochem. Res. (in press)

  28. Balcar, V. J., and Johnston, G. A. R. 1972. The structural specificity of the high affinity uptake ofl-glutamate andl-aspartate by rat brain slices. J. Neurochem. 19:2657–2666.

    PubMed  Google Scholar 

  29. Davis, L. P., and Johnston, G. A. R. 1976. Uptake and release ofd- andl-aspartate by rat brain slices. J. Neurochem. 26:1007–1014.

    PubMed  Google Scholar 

  30. Beale, R., and Osborne, N. N. 1983. Selective uptake of tritiated glycine, GABA andd-aspartate by retinal cells in culture-a study using autoradiography and simultaneous immunofluorescence. Dev. Brain Res. 7:107–120.

    Google Scholar 

  31. Ståhle, L., and Wold, S. 1988. Multivariate data analysis and experimental design in biomedical research. Pages 291–338,in Ellis, G. P., and West, G. B. (eds). Progress in Medical Chemistry vol. 25, Elsevier Scientific Publishers, Amsterdam.

    Google Scholar 

  32. Hamburger, V., and Hamilton, H. L. 1951. A series of normal stages in the development of the chick embryo. J. Morph. 88:49–92.

    Google Scholar 

  33. Box, G. E. P., Hunter, W. G., and Hunter, J. S. 1978. Statistics for experimenters. An introduction to design, data analysis and model building. John Wiley & Sons, Inc., New York.

    Google Scholar 

  34. Snedecor, G. W., and Cochran, W. G. 1980. Statistical methods. 7th edition. The Iowa State University, Ames.

    Google Scholar 

  35. Waldmeier, P. C., Wicki, P., Feldtrauer, J. J., and Baumann, P. A. 1988. The measurement of the release of endogenous GABA from rat brain slices by liquid chromatography with electrochemical detection. Naunyn Schmiedebergs Arch Pharmacol. 337:284–288.

    PubMed  Google Scholar 

  36. Snodgrass, S. R., White, W. F., Biales, B., and Dichter, M. 1980. Biochemical correlates of GABA function in rat cortical neurons in culture. Brain Res. 190:123–138.

    PubMed  Google Scholar 

  37. Yu, A. C. H., Hertz, E., and Hertz, L. 1984. Alterations in uptake and release rates for GABA, glutamate, and glutamine during biochemical maturation of highly purified cultures of cerebral cortical neurons, a GABAergic preparation. J. Neurochem. 42:951–960.

    PubMed  Google Scholar 

  38. Drejer, J., Honoré, T., and Schousboe, A. 1987. Excitatory amino acid-induced release of3H-GABA from cultured mouse cerebral cortex interneurons. J. Neurosci. 7:2910–2916.

    PubMed  Google Scholar 

  39. Bernath, S., and Zigmond, M. J. 1988. Characterization of [3H] GABA release from striatal slices: evidence for a calcium-independent process via the GABA uptake system. Neuroscience. 27:563–570.

    PubMed  Google Scholar 

  40. Sellström, Å., Henn, F., Jacobson, I., and Venema, R. 1981. On the Ca2+-permeability of neurons and glia. Acta Physiol. Scand. 113:253–258.

    PubMed  Google Scholar 

  41. Drejer, J., Larsson, O. M., and Schousboe, A. 1982. Characterization ofl-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47:259–269.

    PubMed  Google Scholar 

  42. Poli, A., Contestabile, A., Migani, P., Rossi, L., Rondelli, C., Virgili, M., Bissoli, R., and Barnabei, O. 1985. Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acidic neurotransmitters. J. Neurochem. 45:1677–1686.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, L., Mattsson, MO. & Sellström, Å. Inhibition of transporter mediated γ-aminobutyric acid (GABA) release by SKF 89976-A, a GABA uptake inhibitor, studied in a primary neuronal culture from chicken. Neurochem Res 17, 577–584 (1992). https://doi.org/10.1007/BF00968786

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968786

Key Words

Navigation