Skip to main content
Log in

Modification of chloride flux across brain membranes by inhibitory amino acids in developing and adult mice

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The influx of36Cl was studied in membrane vesicles prepared from different brain regions from 3-day-old and adult mice. In both age groups the influx was enhanced about threefold by γ-aminobutyric acid (GABA), which effect was blocked by bicuculline and picrotoxin but not by baclofen, characteristic of a GABAA receptor-mediated event. In samples from the adult brain stem the GABA stimulation was smaller than in samples from the other brain regions. Most of the compounds studied apparently act at the same receptor site with the following order of efficacy: muscimol > GABA > β-alanine > hypotaurine > taurine. A number of anticonvulsant taurine derivatives were not effective and glycine only in the brain stem. The weak modulatory effects of taurine could be of significance in vivo since depolarizing stimuli release massive amounts of taurine in developing brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krnjevic, K. 1974. Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54:418–450.

    Google Scholar 

  2. Nistri, A., and Constanti, A. 1979. Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates. Prog. Neurobiol. 13:117–235.

    PubMed  Google Scholar 

  3. Oja, S. S., Kontro, P., and Lähdesmäki, P. 1977. Amino acids as inhibitory neurotransmitters. Prog. Pharmac. 1/3:1–119.

    Google Scholar 

  4. Cash, D. J., and Subbarao, K. 1987. γ-Aminobutyric acid (GABA) mediated transmembrane chloride flux with membrane vesicles from rat brain measured by quench flow technique: kinetic homogeneity of ion flux and receptor desensitization. Life Sci. 41:437–445.

    PubMed  Google Scholar 

  5. Kardos, J., and Maderspach, K. 1987. GABAA receptor-controlled36Cl influx in cultured rat cerebellar granule cells. Life Sci. 41:265–272.

    PubMed  Google Scholar 

  6. Allan, A. M., and Harris, R. A. 1986. γ-Aminobutyric acid agonists and antagonists alter chloride flux across brain membranes. Mol. Pharmac. 29:497–505.

    Google Scholar 

  7. Harris, R. A., and Allan, A. M. 1985. Functional coupling of γ-aminobutyric acid receptors to chloride channels in brain membranes. Science 228:1108–1110.

    PubMed  Google Scholar 

  8. Faber, D. S., and Korn, H. 1987. Voltage-dependence of glycine-activated Cl channels: a potentiometer for inhibition? J. Neurosci. 7:807–811.

    PubMed  Google Scholar 

  9. Finger, W. 1983. Effects of glycine on the grayfish neuromuscular junction. I. Glycine-operated inhibitory postsynaptic channels and a glycine-effected decrease in membrane conductance. Pflügers Arch. 397:121–127.

    Google Scholar 

  10. Gold, M. R., and Martin, A. R. 1984. γ-Aminobutyric acid and glycine activate Cl channels having different characteristics in CNS neurones. Nature 308:639–641.

    PubMed  Google Scholar 

  11. Hamill, O. P., Bormann, J., and Sakmann, B. 1983. Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Nature 305:805–808.

    PubMed  Google Scholar 

  12. Oja, S. S., and Kontro, P. 1983. Taurine. Pages 501–533, in Lajtha, A. (ed), Handbook of Neurochemistry, Vol. 3, 2nd edition, Plenum Press, New York.

    Google Scholar 

  13. Barker, J. L. 1985. GABA and glycine: ion channel mechanisms. Pages 71–100,in Rogawski, M. A., and Barker, J. L. (eds.), Neurotransmitter Actions in the Vertebrate Nervous System, Plenum Press, New York.

    Google Scholar 

  14. Choquet, D., and Korn, H. 1986. Évolution des sensibilités a la glycine, au GABA et a la β-alanine de neurones spinaux en culture. C. R. Acad. Sci., Paris 303:127–130.

    Google Scholar 

  15. Kontro, P., and Oja, S. S. 1987. Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain. Devl Brain Res. 37:277–291.

    Google Scholar 

  16. Kontro, P., and Oja, S. S. 1989. Release of taurine and GABA from cerebellar slices from developing and adult mice. Neuroscience 29:413–423.

    PubMed  Google Scholar 

  17. Andersen, L., Sundman, L.-O., Lindén, I.-B., Kontro, P., and Oja, S. S. 1984. Synthesis and anticonvulsant properties of some 2-aminoethanesulfonic acid (taurine) derivatives. J. Pharm. Sci. 73:106–108.

    PubMed  Google Scholar 

  18. Korpi, E. R., and Uusi-Oukari, M. 1989. GABAA receptor mediated chloride flux in brain homogenates from rat lines with differing innate alcohol sensitivities. Neuroscience 32:387–392.

    PubMed  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  20. Luu, M. D., Morrow, A. L., Paul, S. M., and Schwartz, R. D. 1987. Characterization of GABAA receptor-mediated36chloride uptake in rat brain synaptoneurosomes. Life Sci. 41:1277–1287.

    PubMed  Google Scholar 

  21. Schwartz, R. D., Suzdak, P. D., and Paul, S. M. 1986. γ-Aminobutyric acid (GABA)- and barbiturate-mediated36Cl uptake in rat brain synaptoneurosomes: evidence for rapid desensitization of the GABA receptor-coupled chloride ion channel. Mol. Pharmac. 30:419–426.

    Google Scholar 

  22. Wong, E. H. F., Leeb-Lundberg, L. M. F., Teichberg, V. I., and Olsen, R. W. 1984. γ-Aminobutyric acid activation of36Cl flux in rat hippocampal slices and its potentiation by barbiturates. Brain Res. 303:267–275.

    PubMed  Google Scholar 

  23. Thampy, K. G., and Barnes, E. M., Jr. 1984. γ-Aminobutyric acid-gated chloride channels in cultured cerebral neurons. J. Biol. Chem. 259:1753–1757.

    PubMed  Google Scholar 

  24. Alger, B. E. 1985. GABA and glycine: postsynaptic actions. Pages 33–69,in Rogawski, M. A., and Barker, J. L. (eds), Neurotransmitter Actions in the Vertebrate Nervous System. Plenum Press, New York.

    Google Scholar 

  25. Kontro, P., Marnela, K. M., and Oja, S. S. 1984. GABA, taurine and hypotaurine in developing mouse brain. Acta Physiol. Scand. Suppl. 537:71–74.

    Google Scholar 

  26. Martin del Rio, R., Orensanz Munoz, L. M., and DeFeudis, F. V. 1977. Contents of β-alanine and γ-aminobutyric acid in regions of rat CNS. Expl Brain Res. 28:225–227.

    Google Scholar 

  27. Oja, S. S., and Kontro, P. 1989. Release of endogenous taurine and γ-aminobutyric acid from brain slices from the adult and developing mouse. J. Neurochem. 52:1018–1024.

    PubMed  Google Scholar 

  28. Celentano, J. J., Gibbs, T. T., and Farb, D. H. 1988. Ethanol potentiates GABA- and glycine-induced chloride currents in chick spinal cord neurons. Brain Res. 455:377–380.

    PubMed  Google Scholar 

  29. Mehta, A. K., and Ticku, M. K. 1988. Ethanol potentiation of GABAergic transmission in cultured spinal cord neurons involves γ-aminobutyric acidA-gated chloride channels. J. Pharmac. Exptl Ther. 246:558–564.

    Google Scholar 

  30. Malminen, O., and Kontro, P. 1986. Modulation of the GABA-benzodiazepine receptor complex by taurine in rat brain membranes. Neurochem. Res. 11:85–94.

    PubMed  Google Scholar 

  31. Malminen, O., and Kontro, P. 1987. Actions of taurine on the GABA-benzodiazepine receptor complex solubilized from rat brain. Neurochem. Res. 11:113–117.

    Google Scholar 

  32. Namima, M., Okamoto, K., and Sakai, Y. 1983. Modulatory action of taurine on the release of GABA in cerebellar slices of the guinea pig. J. Neurochem. 40:1–9.

    PubMed  Google Scholar 

  33. Malminen, O., and Korpi, E. R. 1988. GABA/benzodiazepine receptor/chloride ionophore complex in brains of rat lines selectively bred fro differences in ethanol-induced motor impairment. Alcohol 5:239–249.

    PubMed  Google Scholar 

  34. Lawrence, L. J., Palmer, C. J., Gree, K. W., Wang, X., Yamamura, H. I., and Casida, J. E. 1985. t-[3H]Butylbicycloorthobenzoate: new radioligand probe for the gamma-aminobutyric acid-regulated chloride ionophore. J. Neurochem. 45:798–804.

    PubMed  Google Scholar 

  35. Allan, A. M., and Harris, R. A. 1986. Anesthetic and convulsant barbiturates alter γ-aminobutyric acid-stimulated chloride flux across brain membranes. J. Pharmac. Expl Ther. 238:763–768.

    Google Scholar 

  36. Suzdak, P. D., Schwartz, R. D., Skolnick, P., and Paul, S. M. 1986. Ethanol stimulates γ-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc. Natl Acad. Sci. U.S.A. 83:4071–4075.

    PubMed  Google Scholar 

  37. Malatynska, E., Serra, M., Ikeda, M., Biggio, G., and Yamamura, H. I. 1988. Modulation of GABA-stimulated chloride influx by β-carbolines in rat brain membrane vesicles. Brain Res. 443:395–397.

    PubMed  Google Scholar 

  38. Kontro, P., Lindén, I.-B., Gothóni, G., and Oja, S. S. 1983. Novel anticonvulsant taurine derivatives. Pages 211–220,in Kuriyama, K., Huxtable, R. J., and Iwata, H. (eds.), Sulfur Amino Acids — Biochemical and Clinical Aspects, Alan R. Liss, New York.

    Google Scholar 

  39. Oja, S. S., Kontro, P., Lindén, I.-B., and Gothóni, G. 1983. Anticonvulsant activity of some 2-aminoethanesulphonic acid (taurine) derivatives. Eur. J. Pharmacol. 87:191–198.

    PubMed  Google Scholar 

  40. Kontro, P., and Oja, S. S. 1987. Effects of the anticonvulsant taurine derivative, taltrimide, on membrane transport and binding of GABA and taurine in the mouse cerebrum. Neuropharmacology 26:19–23.

    PubMed  Google Scholar 

  41. Kontro, P., and Oja, S. S. 1987. Co-operativity in sodium-independent taurine binding to brain membranes in the mouse. Neuroscience 23:567–570.

    PubMed  Google Scholar 

  42. Aldinio, C., Balzano, M. A., and Toffano, G. 1980. Ontogenic development of GABA recognition sites in different brain areas. Pharmac. Res. Commun. 12:495–500.

    Google Scholar 

  43. Coyle, J. T., and Enna, S. J. 1976. Neurochemical aspects of the ontogenesis of GABAnergic neurons in the rat brain. Brain Res. 111:119–133.

    PubMed  Google Scholar 

  44. Massotti, M., Alleva, F. R., Balazs, T., and Guidotti, A. 1980. GABA and benzodiazepine receptors in the offspring of dams receiving diazepam: ontogenetic studies. Neuropharmacology 19:951–956.

    PubMed  Google Scholar 

  45. Skerritt, J. H., and Johnston, G. A. R. 1982. Postnatal developmental of GABA binding sites and their endogenous inhibitors in rat brain. Devl Neurosci. 5:189–197.

    Google Scholar 

  46. Kontro, P., and Oja, S. S. 1987. Taurine and GABA binding in mouse brain: effects of freezing, washing and Triton X-100 treatment on membranes. Int. J. Neurosci. 32:881–889.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oja, S.S., Korpi, E.R. & Saransaari, P. Modification of chloride flux across brain membranes by inhibitory amino acids in developing and adult mice. Neurochem Res 15, 797–804 (1990). https://doi.org/10.1007/BF00968557

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968557

Key Words

Navigation