Skip to main content
Log in

Guanine nucleotide- and muscarinic agonist-dependent phosphoinositide metabolism in synaptoneurosomes from cerebral cortex of immature rats

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Guanine nucleotide-, neurotransmitter-, and fluoride-stimulated accumulation of [3H]inositol phosphates ([3H]InsPs) was measured in [3H]inositol-labeled synaptoneurosomes from cerebral cortex of immature (7-day-old) and adult rats, in order to clarify the role of GTP-binding proteins (G-proteins) in modulating phosphoinositide (PtdIns) metabolism during brain development. GTP(S) [Guanosine 5′-O-(3-thio)triphosphate] time- and concentration-dependently stimulated PtdIns hydrolysis. Its effect was potentiated by full (carbachol, metacholine) and partial (oxotremorine) cholinergic agonists through activation of muscarinic receptors. The presence of deoxycholate was required to demonstrate agonist protentiation of the guanine nucleotide effect. The response to GTP(S) was higher in adult than in immature rats, while the effect of cholinergic agonists was similar at the two ages examined. At both ages, histamine potentiated the effect of GTP(S), while norepinephrine was ineffective. At both ages, guanosine 5′-O-(2-thio)diphosphate [GDP(S)] and pertussis toxin significantly decreased GTP(S)-induced [3H]InsPs formation. The phorbol ester phorbol 12-myristate 13-acetate (PMA), on the other hand, did not inhibit the guanine nucleotide response in synaptoneurosomes from immature rats. NaF mimicked the action of GTP(S) in stimulating PtdIns hydrolysis. Its effect was not affected by carbachol and was highly synergistic with that of AlCl3, according to the concept that fluoroaluminate (AlF4 ) is the active stimulatory species. No quantitative differences were found in the response to these salts between immature and adult animals. These results provide evidence that, in both the immature and adult rat brain, neuroreceptor activation is coupled to PtdIns hydrolysis through modulatory G-proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge, M. J., and Irvine, R. F. 1989. Inositol phosphates and cell signalling. Nature 341:197–205.

    Google Scholar 

  2. Rana, R. S., and Hokin, L. E. 1990. Role of phosphoinositides in transmembrane signalling. Physiol. Rey. 70:115–164.

    Google Scholar 

  3. Taylor, C. W., and Merritt, J. E. 1986. Receptor coupling to polyphosphoinositide turnover: a parallel with the adenylate cyclase system. Trends Pharmacol. Sci. 7:238–242.

    Google Scholar 

  4. Fain, J. N. 1990. Regulation of phosphoinositide-specific phospholipase C. Biochim. Biophys. Acta 1053:81–88.

    Google Scholar 

  5. Harden, T. K. 1990. G protein-dependent regulation of phospholipase C by cell surface receptors. Am. Rev. Respir. Dis. 141:S119-S122.

    Google Scholar 

  6. Gonzales, R. A., and Grews, F. T. 1985. Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes. Biochem. J. 232:799–804.

    Google Scholar 

  7. Jope, R. S., Casebolt, T. L., and Johnson, G. V. W. 1987. Modulation of carbachol-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. Neurochem. Res. 12:693–700.

    Google Scholar 

  8. Li, P. P., Chiu, A. S., and Warsh, J. J. 1989. Activation of phosphoinositide hydrolysis in rat cortical slices by guanine nucleotides and sodium fluoride. Neurochem. Int. 14:43–48.

    Google Scholar 

  9. Litosch, I. 1987. Guanine nucleotide and NaF stimulation of phospholipase C activity in rat cerebral cortical membranes: studies on substrate specificity. Biochem. J. 244:35–40.

    Google Scholar 

  10. Carter, H. R., and Fain, J. N. 1991. Muscarinic cholinergic stimulation of exogenous phosphatidylinositol hydrolysis is regulated by guanine nucleotides in rabbit brain cortical membranes. J. Neurochem. 56:1616–1622.

    Google Scholar 

  11. Chiu, A. S., Li, P. P., and Warsh, J. J. 1988. G-protein involvement in central-nervous-system muscarinic-receptor-coupled polyphosphoinositide hydrolysis. Biochem. J. 265:995–999.

    Google Scholar 

  12. Claro, E., Garcia, A., and Picatoste, F. 1989. Carbachol and histamine stimulation of guanine-nucleotide-dependent phosphoinositide hydrolysis in rat brain cortical membranes. Biochem. J. 261:29–35.

    Google Scholar 

  13. Claro, E., Wallace, M. A., Lee, H. M., and Fain, J. N. 1989. Carbachol in the presence of guanosine 5′-O-(3-thiotriphosphate) stimulates the breakdown of exogenous phosphatidylinositol 4,5-bis-phosphate, phosphatidylinositol 4-phosphate and phosphatidylinositol by rat brain membranes. J. Biol. Chem. 264:18288–18295.

    Google Scholar 

  14. Wallace, M. A., and Claro, E. 1990. Comparison of scioroninergic to muscarinic cholinergic stimulation of phosphoinositidespecific phospholipase C in rat brain cortical membranes. J. Pharmacol. Exp. Ther. 255:1296–1300.

    Google Scholar 

  15. Cockroft, S., and Taylor, J. 1987. Fluoroaluminates mimic guanosine 5′-[γ-thio]triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes: role for the guanine regulatory protein Gp in signal transduction. Biochem. J. 241:409–414.

    Google Scholar 

  16. Schoepp, D. D., and Rutledge, C. O. 1985. Comparison of postnatal changes in alpha1-adrenoceptor binding and adrenergic stimulation of phosphoinositide hydrolysis in rat cerebral cortex. Biochem. Pharmacol. 34:2705–2711.

    Google Scholar 

  17. Baldunini, W., Murphy, S. D., and Costa, L. G. 1987. Developmental changes in muscarinic receptor-stimulated phosphoinositide metabolism in rat brain. J. Pharmacol. Exp. Ther. 241:421–427.

    Google Scholar 

  18. Baldunini, W., Murphy, S. D., and Costa, L. G. 1990. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats. J. Pharmacol. Exp. Ther. 253:573–579.

    Google Scholar 

  19. Rooney, T. A., and Nahorski, S. R. 1987. Postnatal ontogeny of agonist and depolarization-induced phosphoinositide hydrolysis in rat cerebral cortex. J. Pharmacol. Exp. Ther. 243:333–341.

    Google Scholar 

  20. Heacock, A. M., Fisher, S. K., and Agranoff, B. W. 1987. Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. 48:1904–1911.

    Google Scholar 

  21. Balduini, W., Candura, S. M., and Costa, L. G. 1991. Regional development of carbachol-, glutamate-, norepinephrine-, and serotonin-stimulated phosphoinositide metabolism in rat brain. Dev. Brain Res. 62:115–120.

    Google Scholar 

  22. Candura, S. M., Castoldi, A. F., Manzo, L., and Costa, L. G. 1991. Interaction of alumunium ions with phosphoinositide metabolism in rat cerebral cortical membranes. Life Sci. 49:1245–1252.

    Google Scholar 

  23. Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-stimulated phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206:587–595.

    Google Scholar 

  24. Snedecor, G. W., and Cochran, W. G. 1980. Statistical Methods, The Iowa State University Press, Ames, Iowa.

    Google Scholar 

  25. Carter, H. R., Wallace, M. A., and Fain, J. N. 1990. Activation of phospholipase C in rabbit brain membranes by carbachol in the presence of GTP(S); effects of biological detergents. Biochim. Biophys. Acta 1054:129–135.

    Google Scholar 

  26. Labarca, R., Janowsky, A., Patel, J., and Paul, S. M. 1984. Phorbol esters inhibit agonist-induced [3H]inositol-1-phosphate accumulation in rat hippocampal slices. Biochem. Biophys. Res. Comm. 123:703–709.

    Google Scholar 

  27. Gonzales, R. A., Greger, P. H., Baker, S. P., Ganz, N. I., Bolder, C., Raizada, M. K., and Crews, F. T. 1987. Phorbol esters inhibit agonist stimulated phosphoinositide hydrolysis in neuronal primary cultures. Dev. Brain Res. 37:759–766.

    Google Scholar 

  28. Smrcka, A. V., Hepler, J. R., Brown, K. D., and Sternweis, P. C. 1991. Regulation of phosphoinositide-specific phospholipase C activity by purified Go. Science 251:804–807.

    Google Scholar 

  29. Eckstein, F., Casel, D., Levkovitz, H., Lowe, M., and Selinger, Z. 1979. Guanosine 5′-O-(2-thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J. Biol. Chem. 254:9829–9834.

    Google Scholar 

  30. Blackmore, P. F., and Exton, J. H. 1986. Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J. Biol. Chem. 261:11056–11063.

    Google Scholar 

  31. O'Shea, J. J., Urdahl, K. B., Luoung, H. T., Chused, T. M., Samelson, L. E., and Klausner, R. D. 1987. Aluminum fluoride induces phosphatidylinositol turnover, elevation of cytoplasmic free calcium, and phosphorylation of the T cell antigen receptor in murine T cells. J. Immunol. 139:3463–3469.

    Google Scholar 

  32. Chung, S. M., Proia, A. D., Klintworth, G. K., Watson, S. P., and Lapetina, E. G. 1985. Deoxycholate induces the preferential hydrolysis of polyphosphoinositides by human platelet and rat corneal phospholipase C. Biochem. Biophys. Res. Commun. 129:411–416.

    Google Scholar 

  33. Bojanic, D., Wallace, M. A., Wojcikiewicz, R. J. H., and Fain, J. N. 1987. Guanine nucleotide and pyrophosphate activate exogenous phosphatidylinositol 4,5-bisphosphate hydrolysis in rat liver plasma membranes. Biochem. Biophys. Res. Commun. 147:1088–1094.

    Google Scholar 

  34. McMahon, K. K. 1989. Developmental changes of the G proteinsmuscarinic cholinergic receptor interactions in rat heart. J. Pharmacol. Exp. Ther. 251:372–377.

    Google Scholar 

  35. Allworth, A. E., Hildebrandt, J. D., and Ziomek, C. A. 1990. Differential regulation of G protein subunit expression in mouse oocytes, eggs, and early embryos. Dev. Biol. 142:129–137.

    Google Scholar 

  36. Milligan, G., Streaty, R. A., Gierschik, P., Spiegel, A. M., and Klee, W. A. 1987. Development of opiate receptors and GTP-binding regulatory proteins in neonatal rat brain. J. Biol. Chem. 262:8626–8630.

    Google Scholar 

  37. Lee, W., Nicklaus, K. J., Manning, D. R., and Wolfe, B. B. 1990. Ontogeny of cortical muscarinic receptor subtypes and muscarinic receptor-mediate responses in rat. J. Pharmacol. Exp. Ther. 252:482–490.

    Google Scholar 

  38. Nahorski, S. R., Kendall, D. A., and Batty, I. 1986. Receptors and phosphoinositide metabolism in the central nervous system. Biochem. Pharmacol. 35:2447–2453.

    Google Scholar 

  39. Fisher, S. K., and Agranoff, B. W. 1987. Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48:999–1017.

    Google Scholar 

  40. Chandler, L. J., and Crews, F. T. 1990. Calcium—versus G protein—mediated phophoinositide hydrolysis in rat cerebral cortical synaptoneurosomes. J. Neurochem. 55:1022–1030.

    Google Scholar 

  41. Bartolami, S., Guiramund, J., Lenoir, M., Pujol, R., and Recasens, M. 1990. Carbachol-induced inositol phosphate formation during rat cochlea development. Hearing Res. 47:229–234.

    Google Scholar 

  42. Dobbing, J., and Sands, J. 1979. Comparative aspects of the brain growth spurt. Early Human Dev. 3:79–83.

    Google Scholar 

  43. Coyle, J. T., and Yamamura, H. I. 1976. Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain. Brain Res. 118:429–440.

    Google Scholar 

  44. Costa, L. G. 1992. Muscarinic receptors and the developing nervous system.in Zagon, I. S., McLaughlin, P. J. (ed.), Receptors in the Developing Nervous System, Chapman and Hall, London, in press.

    Google Scholar 

  45. Orellana, S., Solski, P. A., and Brown, J. H. 1987. Guanosine 5′-O-(thiotriphosphate)-dependent inositol trisphosphate formation in membranes is inhibited by phorbol ester and protein kinase C. J. Biol. Chem. 262:1638–1643.

    Google Scholar 

  46. Asaoka, Y., Kikkawa, U., Sekiguchi, K., Shearman, M. S., Kosaka, G., Nakano, Y., Satoh, T., and Nishizuka, Y. 1988. Activation of a brain-specific protein kinase C subspecies in the presence of phosphatidylethanol. FEBS Lett. 231:221–224.

    Google Scholar 

  47. Katada, T., and Ui, M. 1982. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 79:3129–3133.

    Google Scholar 

  48. Li, P. P., Sibony, D., and Warsh, J. J. 1990. Guanosine 5′-O-thiotriphosphate and sodium fluoride activate polyphosphoinositide hydrolysis in rat cortical membranes by distinct mechanisms. J. Neurochem. 54:1426–1432.

    Google Scholar 

  49. Hollingsworth, E. B., McNeal, E. T., Burton, J. L., Williams, R. J., Daly, J. W., and Creveling, C. R. 1985. Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′∶5′-monophosphate-generating systems, receptors and enzymes. J. Neurosci. 5:2240–2253.

    Google Scholar 

  50. Gusovsky, F., Hollingsworth, E. B., and Daly, J. W. 1986. Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: stimulatory effects of agents that enhance influx of sodium ions. Proc. Natl. Acad. Sci. USA 83:3003–3007.

    Google Scholar 

  51. Gonzales, R. A., and Crews, F. T. 1988. Differential regulation of phosphoinositide phosphodiesterase activity in brain membranes by guanine nucleotides and calcium. J. Neurochem. 50:1522–1528.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candura, S.M., Castoldi, A.F., Manzo, L. et al. Guanine nucleotide- and muscarinic agonist-dependent phosphoinositide metabolism in synaptoneurosomes from cerebral cortex of immature rats. Neurochem Res 17, 1133–1141 (1992). https://doi.org/10.1007/BF00967291

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967291

Key Words

Navigation