Skip to main content
Log in

Effects of Ca(II) ions on Mn(II) dynamics in chick glia and rat astrocytes: Potential regulation of glutamine synthetase

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that in glia and astrocytes Mn(II) is distributed with ca. 30–40% in the cytoplasm, 60–70% in mitochondria. Ca(II) ions were observed to alter both the flux rates and distribution of Mn(II) ions in primary cultues of chick glia and rat astrocytes. External (influxing) Ca(II) ions had the greatest effect on Mn(II) uptake and efflux, compared to internal (effluxing) or internal-external equilibrated Ca(II) ions. External (influxing) Ca(II) ions inhibited the net rate and extent of Mn(II) uptake but enhanced Mn(II) efflux from mitochondria. These observations differ from Ca(II)−Mn(II) effects previously reported with “brain” (neuronal) mitochondria. Overall, increased cytoplasmic Ca(II) acts to block Mn(II) uptake and enhance Mn(II) release by mitochondria, which serve to increase the cytoplasmic concentration of free Mn(II). A hypothesis is presented involving external L-glutamate acting through membrane receptors to mobilize cell Ca(II), which in turn causes mitochondrial Mn(II) to be released. Because the concentration of free cytoplasmic Mn(II) is poised near the Kd for Mn(II) with glutamine synthetase, a slight increase in cytoplasmic Mn(II) will directly enhance the activity of glutamine synthetase, which catalyzes removal of neurotoxic glutamate and ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metal Ions in Neurology and Psychiatry, Gabay, S., Harris, J., and Ho, B. T. (eds.) pp. 3–34, 49–68, 121–128, Liss, New York, 1985.

    Google Scholar 

  2. Underwood, E. J. 1977. Trace Elements in Human and Animal Nutrition. 4th Edn. pp. 171–195, Academic Press, New York.

    Google Scholar 

  3. Manganese in Metabolism and Enzyme Function, Schramm, V. L., and Wedler, F. C. (eds.) Academic Press, New York, 1986.

    Google Scholar 

  4. Gianutsos, G., Seltzer, M. D., Saymeh, R., Wu, M. W., and Michel, R. G. 1985. Brain manganese accumulation following systemic administration of different forms. Arch. Toxicol. 57:272–275.

    Google Scholar 

  5. Wedler, F. C., Ley, B. W., and Grippo, A. A. 1989. Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex. Neurochem. Res. 14:1129–1135.

    Google Scholar 

  6. Aschner, M., Gannon, M., and Kimelberg, H. K. 1992. Manganese uptake and efflux in cultured rat astrocytes. J. Neurochem. 58:730–735.

    Google Scholar 

  7. Tholey, G., Ledig, M., Kopp, P., Sargentini-Maier, L., Leroy, M., Grippo, A. A., and Wedler, F. C. 1988. Levels and subcellular distribution of physiologically important metal ions in neuronal cells cultured from chick embryo cerebral cortex. Neurochem. Res. 13:1163–1167.

    Google Scholar 

  8. Tholey, G., Ledig, M., Mandel, P., Sargentini, L., Frivold, A. H., Leroy, M., Grippo, A. A., and Wedler, F. C. 1988. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem. Res. 13:45–50.

    Google Scholar 

  9. Schramm, V. L. 1986. Evaluation of Mn(II) in metabolic regulation: analysis of proposed sites for regulation,in ref., pp. 109–132.

    Google Scholar 

  10. Scrutton, M. C. 1986. Manganese and pyruvate carboxylase,in ref., pp. 147–163.

    Google Scholar 

  11. Nowak, T. 1986. Manganese and phosphoenolpyruvate carboxykinase,in ref., pp. 165–191.

    Google Scholar 

  12. Beyer, W. F., Jr., and Fridovich, I. 1986. Manganese-catalase and manganese superoxide dismutase: spectroscopic similarity with functional diversity.in ref., pp. 193–219.

    Google Scholar 

  13. Wedler, F. C., and Toms, R. 1986. Interactions of Mn(II) with mammalian glutamine synthetase.in ref., pp. 221–238.

    Google Scholar 

  14. Maurizi, M. R., Pinkofsky, H. B., and Ginsberg, A. 1987. ADP, chloride ion, and metal ion binding to bovine brain glutamine synthetase. Biochemistry 26:5023–5031.

    Google Scholar 

  15. Wedler, F. C., and Ley, B. W. 1994. Kinetic, ESR, and trapping evidence for in vivo binding of Mn(II) to glutamine synthetase in brain cells. Neurochem. Res. 19:139–144 (accompanying paper).

    Google Scholar 

  16. Meister, A. 1980. Catalytic mechanisms of glutamine synthetase: overview of glutamine metabolism.in Glutamine: Metabolism, Enzymology, and Regulation, Mora, J., and Palacios, R. (eds.), pp. 1–40, Academic Press, New York.

    Google Scholar 

  17. Sensenbrenner, M. 1977. Dissociated brain cells in primary culture, pp. 191–213,in Federoff, S., and Hertz, L. (eds.), Cell, Tissue, and Organ Culture in Neurobiology, Academic Press, New York.

    Google Scholar 

  18. Bottenstein, J. E., and Sato, G. H. 1979. Growth of a neuroblastoma cell line in serum-free supplemented medium. Proc. Nat. Acad. Sci, USA 76:514–517.

    Google Scholar 

  19. Frangakis, M. V., and Kimelberg, H. K. 1984. Dissociation of neonatal rat brain by Dispase for preparation of primary astrocyte cultures. Neurochem. Res. 9:1689–1698.

    Google Scholar 

  20. Goldschmidt, R. C., and Kimelberg, H. K. 1989. Protein analysis of mammalian cells in monolayer culture using the bicinchononic assay. Anal. Biochem. 176:41–45.

    Google Scholar 

  21. Tholey, G., Megias-Megias, L., Wedler, F. C., and Ledig, M. 1990. Modulation of Mn2+ accumulation in cultured rat neuronal and astroglial cells. Neurochem. Res. 7:751–754.

    Google Scholar 

  22. Blankenfeld, G. V., and Kettenmann, H. 1992. Glutamate and GABA receptors in vertebrate glial cells. Molec. Neurobiol. 5:31–43.

    Google Scholar 

  23. Ahmed, Z., Lewis, C. A., and Faber, D. S. 1990. Glutamate stimulates release of Ca2+ from internal stores in astroglia. Brain Res. 516:165–169.

    Google Scholar 

  24. Konji, V., Montag, A., Sandri, G., Nordenbrand, K., and Ernster, L. 1985. Transport of Ca2+ and Mn2+ by mitochondria from rat liver, heart, and brain. Biochimie 67:1241–1250.

    Google Scholar 

  25. Gavin, C. E., Gunter, K. K., and Gunter, T. E. 1990. Manganese and calcium efflux kinetics in brain mitochondria: relevance to manganese toxicity. Biochem. J. 266:329–334.

    Google Scholar 

  26. Allshire, A., Bernardi, P., and Saris, N-E. L. 1985. Manganese stimulates calcium flux through the mitochondrial uniporter. Biochim. Biophys. Acta 807:202–209.

    Google Scholar 

  27. Shamoo, A. E. 1986. Mn(II) and Ca(II) transport in mitochondria,in ref., pp. 51–64.

    Google Scholar 

  28. Li, X., Song, L., and Jope, R. 1990. Modulation of phosphoinositide metabolism in rat brain slices by excitory amino acids, arachidonic acid, and GABA. Neurochem. Res. 15:725–738.

    Google Scholar 

  29. Goldman, R. S., Chavez-Noriega, L. E., and Stevens, C. F. 1990. Failure to reverse long-term potentiation by coupling sustained presynaptic activity and N-methyl-D-aspartate receptor blockade. Proc. Nat. Acad. Sci., US 87:7165–7169.

    Google Scholar 

  30. Rosenberg, P. A. 1991. Accumulation of extracellular glutamate and neuronal death in astrocyte-poor cortical cultures exposed to glutamine. Glia 4:91–100.

    Google Scholar 

  31. Walker, J. E. 1983. Glutamate, GABA, and CNS disease: a review. Neurochem. Res. 8:521–548.

    Google Scholar 

  32. Shank, R. P., and Campbell, G. LeM. 1983. Glutamate.in Handbook of Neurochemistry (Lajtha, A., ed.) vol. 3 (2nd Edn.) Plenum, New York, pp. 381–404.

    Google Scholar 

  33. Greenmayre, J. T. 1986. The role of glutamate in neurotransmission and in neurologic disease. Neurol. Rev. 43:1058–1063.

    Google Scholar 

  34. Sahai, S. 1990. Glutamate in the mammalian CNS. Eur. Arch. Psych. Clin. Neurosci. 240:121–133.

    Google Scholar 

  35. Baudry, M., and Lynch, G. 1979. Regulation of glutamate receptors by cations. Nature 282:748–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedler, F.C., Vichnin, M.C., Ley, B.W. et al. Effects of Ca(II) ions on Mn(II) dynamics in chick glia and rat astrocytes: Potential regulation of glutamine synthetase. Neurochem Res 19, 145–151 (1994). https://doi.org/10.1007/BF00966809

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966809

Key Words

Navigation