Skip to main content
Log in

Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GABAA-receptors were localized in explant cultures of rat cerebellum and in dissociated primary cultures of rat cerebellar granule cells and rat cerebellar astrocytes using the monoclonal antibody bd-17 directed against the β-subunit of the GABAA/benzodiazepine/chloride channel complex. At the light microscope level specific staining of GABAA-receptors was localized in various types of neurones in explant cultures of rat cerebellum using the indirect peroxidase-antiperoxidase (PAP) technique, whereas no specific staining was found in astrocytes. At the electron microscope level labeling of GABAA-receptors was observed in the plasma membrane of both the cell bodies and processes in dissociated primary cultures of cerebellar granule cells using an indirect preembedding immunogold staining technique which in contrast to the classical PAP technique allows quantitative estimations to be performed. Quantification of the labeling intensity revealed a higher concentration of GABAA-receptors per μm plasma membrane in the cell bodies than in the processes. In discrete areas an extremely high density of the GABAA-receptors was observed. No specific labeling of GABAA-receptors was observed in dissociated primary cultures of cerebellar astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, E., and Frankel, S. 1950. γ-Aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem. 187:55–63.

    PubMed  Google Scholar 

  2. Curtis, D. R., and Johnston, G. A. R. 1974. Amino acid transmitters in the mammalian central nervous system. Erg. Physiol. 69:97–188.

    PubMed  Google Scholar 

  3. Roberts, E. 1979. New directions in GABA research I: Immunocytochemical studies of GABA neurons. Pages 28–45. In Krogsgaard-Larsen, P., Scheel-Krüger, J., and Kofod, H. (eds.), GABA-Neurotransmitters. Pharmacochemical, Biochemical and Pharmacological Aspects. Munksgaard, Copenhagen.

    Google Scholar 

  4. Johnston, G. A. R., Allan, R. D., and Skerritt, J. H. 1984. GABA receptors. Pages 213–237.in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 6: Receptors in the Nervous System. Plenum Press, New York.

    Google Scholar 

  5. Wamsley, J. K., and Palacios, J. M. 1984. Amino acid and benzodiazepine receptors. Pages 352–385. In Björklund, A., Hökfelt, T., and Kuhar, M. J. (eds.), Handbook of Chemical Neuroanatomy, Vol. 3: Classical Transmitters and Transmitter Receptors in the CNS. Elsevier, Amsterdam.

    Google Scholar 

  6. Kuhar M. J., DeSouza, E. B., and Unnerstall, J. R. 1986. Neurotransmitter receptor mapping by autoradiography and other methods. Annu. Rev. Neurosci. 9:27–59.

    PubMed  Google Scholar 

  7. Hösli, E., and Hösli, L. 1980. Autoradiographic localization of3H-GABA and3H-muscimol binding in rat cerebellar cultures. Exp. Brain Res. 38:242–243.

    Google Scholar 

  8. Hösli, E., Möhler, H., Richards, J. G., and Hösli, L. 1980. Autoradiographic localization of binding sites for [3H]-γ-aminobutyrate, [3H]bicuculline methiodide and [3H]flunitrazepam in cultures of rat cerebellum and spinal cord. Neuroscience 5:1657–1665.

    PubMed  Google Scholar 

  9. Hösli, E., Krogsgaard-Larsen, P., and Hösli, L. 1985. Autoradiographic localization of binding sites for the γ-aminobutyric acid analogues 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isoguvacine and baclofen on cultured neurons of rat cerebellum and spinal cord. Neurosci. Lett. 61:153–157.

    PubMed  Google Scholar 

  10. Meier, E., and Schousboe, A. 1982. Differences between GABA receptor binding to membranes from cerebellum during postnatal development and from cultured cerebellar granule cells. Devl. Neurosci. 5:546–553.

    Google Scholar 

  11. Richards, J. G., Schoch, P., Haring, P., Takacs, B. and Möhler, H. 1987. Resolving GABAA-benzodiazepine receptors: Cellular and subcellular localization in the CNS with monoclonal antibodies. J. Neurosci. 7:1866–1886.

    PubMed  Google Scholar 

  12. Larsson, L.-I. Methods for immunocytochemistry of neurohormonal peptides. Pages 147–209. In Björklund, A., and Hökfelt, T. (eds.), Handbook of Chemical Neuroanatomy. Vol. 1. Methods in Chemical Neuroanatomy. Elsevier Science Publishers B.V. Amsterdam.

  13. Schousboe, A. 1980. Primary cultures of astrocytes from mammalian brain as a tool in neurochemical research. Cell. Mol. Biol. 26:505–513.

    Google Scholar 

  14. Kettenmann, H., Backus, K. H., and Schachner, M. 1984. Aspartate, glutamate and gamma-aminobutyric acid depolarize cultured astrocytes. Neurosci. Lett. 52:25–29.

    PubMed  Google Scholar 

  15. Kettenmann, H., Backus, K. H., and Schachner, M. 1988. Glial GABA receptors. Pages 587–598. In Norenberg, M.D., Hertz, L., and Schousboe, A. (eds.), The Biochemical Pathology of Astrocytes. Alan R. Liss, Inc., New York.

    Google Scholar 

  16. Hösli, L., and Hösli, E. 1978. Action and uptake of neurotransmitters in CNS tissue culture. Rev. Physiol. Biochem. Pharmacol. 81:135–188.

    PubMed  Google Scholar 

  17. Schousboe, A., Meier, E., Drejer, J., and Hertz, L. 1989. Preparation of cultures of mouse (rat) cerebellar granule cells. Pages 203–206.in Shahar, A., De Vellis, J., Vernadakis, A., and Haber, B. (eds.), A Dissection and Tissue Culture Manual for the Nervous System. Alan R. Liss, New York.

    Google Scholar 

  18. Drejer, J., and Schousboe, A. 1989. Selection of a pure cerebellar granule cell culture by kainate treatment. Neurochem. Res. 14:751–754.

    PubMed  Google Scholar 

  19. Messer, A. 1977. The maintenance and identification of mouse cerebellar granule cells in monolayer cultures. Brain Res. 130:1–12.

    PubMed  Google Scholar 

  20. Drejer, J., Larsson, O. M., and Schousboe, A. 1982. Characterization ofl-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp Brain Res. 47:259–269.

    PubMed  Google Scholar 

  21. Drejer, J., Honoré, T., Meier, E., and Schousboe, A. 1986. Pharmacologically distinct glutamate receptors on cerebellar granule cells. Life Sci. 38:2077–2085.

    PubMed  Google Scholar 

  22. Gallo, V., Ciotti, M. T., Coletti, A., Aloisi, F., and Levi, G. 1982. Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl. Acad. Sci. USA. 79:7919–7923.

    PubMed  Google Scholar 

  23. Meier, E., Drejer, J., and Schousboe, A. 1984. GABA induces functionally active low-affinity GABA receptors on cultured cerebellar granule cells. J. Neurochem. 43:1737–1744.

    PubMed  Google Scholar 

  24. Palaiologos, G., Hertz, L., and Schousboe, A. 1988. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J. Neurochem. 51:317–320.

    PubMed  Google Scholar 

  25. Hansen, G. H., Meier, E., and Schousboe, A. 1984. GABA influences the ultrastructure composition of cerebellar granule cells during development in culture. Int. J. Devl. Neurosci. 2:247–257.

    Google Scholar 

  26. Hansen, G. H., Meier, E., Abraham, J., and Schousboe, A. 1987. Trophic effect of GABA on cerebellar granule cells in culture. Pages 109–138. In Redburn, D. A., and Schousboe, A. (eds.). Neurotrophic Activity of GABA During Development. Alan R. Liss, Inc., New York.

    Google Scholar 

  27. Hertz, L., Juurlink, B. H. J., Fosmark, H., and Schousboe, A. 1982. Astrocytes in primary culture. Pages 175–186.in Pfeiffer, S. E. (ed.), Neuroscience Approached Through Cell Culture, Vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  28. Hertz, L., Juurlink, B. H. J., Hertz, E., Fosmark, H., and Schousboe, A. 1989. Preparation of primary cultures of mouse (rat) astrocytes. Pages 105–108.in Shahar, A., De Vellis, J., Vernadakis, A., and Haber, B. (eds.), A Dissection and Tissue Culture Manual of the Nervous System, Alan R. Liss, Inc., New York.

    Google Scholar 

  29. Sternberger, L. A., Hardy, P. H., Jr., Cuculis, J. J., and Meyer, H. G. 1970. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti-horseradish peroxidase) and its use in identification of spirochetes. J. Histochem. Cytochem. 18:315–333.

    PubMed  Google Scholar 

  30. Hösli, E., and Hösli, L. 1990. Immunohistochemical studies on the cellular localization of GABAA-receptors in explant cultures of rat central nervous system using a monoclonal antibody. Exp. Brain Res. 82:667–671.

    PubMed  Google Scholar 

  31. Slot, J. W., and Geuze, H. J. 1985. A new method of preparing gold probes for multiple-labelling cytochemistry. Eur. J. Cell Biol. 38:87–93.

    PubMed  Google Scholar 

  32. Wang, B.-L., and Larsson, L.-I. 1985. Simultaneous demonstration of multiple antigens by indirect immunofluorescence or immunogold staining: Novel light and electronmicroscopical double and triple stained method employing antibodies from the same species. Histochemistry 83:47–56.

    PubMed  Google Scholar 

  33. Hansen, G. H., Belhage, B., Schousboe, A., and Meier, E. 1987. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells. Int. J. Devl. Neurosci. 5:263–269.

    Google Scholar 

  34. Somogyi, P., Takagi, H., Richards, J. G., and Möhler, H. 1989. Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat and monkey using monoclonal antibodies. J. Neurosci. 9:2197–2209.

    PubMed  Google Scholar 

  35. Belhage, B., Meier, E., and Schousboe, A. 1986. GABA-agonists induce the formation of low-affinity GABA-receptors on cultured cerebellar granule cells via preexisting high affinity GABA-receptors. Neurochem. Res. 11:599–606.

    PubMed  Google Scholar 

  36. Ossola, L., DeFeudis, F. V., and Mandel, P. 1979. Lack of Na+-independent (3H)GABA binding to particulate fractions of cultured astroblasts of rat brain. J. Neurochem. 34:1026–1029.

    Google Scholar 

  37. Wisden, W., McNaughton, L. A., Darlison, M. G., Hunt, S. P. and Barnard, E. A. 1989. Differential distribution of GABAA receptor mRNAs in bovine cerebellum-localization of α2 mRNA in Bergmann glia layer. Neurosci. Lett. 106:7–12.

    PubMed  Google Scholar 

  38. Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Köhler, M., Schofield, P.R., and Seeburg, H. 1989. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3:327–337.

    PubMed  Google Scholar 

  39. Hösli, E., and Hösli, L. 1990. Evidence for GABAB receptors on cultured astrocytes of rat CNS. Autoradiographic binding studies. Exp. Brain Res. 80:621–625.

    PubMed  Google Scholar 

  40. Hösli, L., Hösli, E., Redle, S., Rojas, J., and Schramek, H. 1990. Action of baclofen, GABA and antagonists on the membrane potential of cultured astrocytes of rat spinal cord. Neurosci. Lett. 117:307–312.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eugene Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, G.H., Hösli, E., Belhage, B. et al. Light and electron microscopic localization of GABAA-receptors on cultured cerebellar granule cells and astrocytes using immunohistochemical techniques. Neurochem Res 16, 341–346 (1991). https://doi.org/10.1007/BF00966097

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966097

Key Words

Navigation