Skip to main content
Log in

The mismatch problem for GABAergic amacrine cells in goldfish retina: Resolution and other issues

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GABAergic neurons in the vertebrate retina have received intensive study. Yet there are several notable examples of a “mismatch” among the cytochemical markers used to identify GABAergic neurons. The mismatch between [3H]GABA uptake autoradiography and all other indicators of GABAergic neurons as they pertain to amacrine cells in goldfish retina is examined in this overview. The discrepancies can be accounted for largely by barriers to diffusion presented by significant GABA uptake sinks at the inner and outer margins of the retina and by the differential subcellular distribution of the various markers for GABAergic neurons. Also, conditions producing a redistribution of [3H]-GABA and endogenous GABA stores within the retina are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, E., and Frankel, S. 1950. γ-Aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem. 187:55–63.

    PubMed  Google Scholar 

  2. Mandel, P., and DeFeudis, F. V. 1979. GABA-Biochemistry and CNS Functions, Advances in Experimental Medicine and Biology, vol. 123, Plenum Press, New York.

    Google Scholar 

  3. Erdo, S. L., and Wolff, J. R. 1990. γ-Aminobutyric acid outside the mammalian brain. J. Neurochem. 54:363–372.

    Google Scholar 

  4. Roberts, E. 1978. New directions in GABA research. I: Immunocytochemical studies of GABA neurons. pages 28–45,in Krogsgaard-Larsen, P., Scheel-Kruger, J., and Kofod, H. (eds.), GABA-Neurotransmitters: Pharmacochemical, Biochemical and Pharmacological Aspects, Academic Press, New York.

    Google Scholar 

  5. Wuenschell, C. W., Fisher, R. S., Kaufmann, D. L., and Tobin, A. J. 1986.In situ hybridization to localize mRNA encoding the neurotransmitter synthetic enzyme glutamate decarboxylase in mouse cerebellum. Proc. Natl. Acad. Sci., USA 83:6139–6197.

    Google Scholar 

  6. Sarthy, P. V., and Fu, M. 1989. Localization of L-glutamic acid decarboxylase mRNA in cat retinal horizontal cells byin situ hybridization. J. Comp. Neurol. 288:593–600.

    PubMed  Google Scholar 

  7. Sarthy, P. V., and Fu, M. 1989. Localization of L-glutamic acid decarboxylase mRNA in monkey and human retina byin situ hybridization. J. Comp. Neurol. 288:691–697.

    PubMed  Google Scholar 

  8. Herkenham, M. 1987. Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23:1–38.

    PubMed  Google Scholar 

  9. Dowling, J. E. 1987. The Retina: An Approachable Part of the Brain, Belknap Press of Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  10. Yazulla, S. 1986. GABAergic mechanisms in the retina. Prog. in Retinal Res. 5:1–52.

    Google Scholar 

  11. Mosinger, J. L., and Yazulla, S. 1987. Double-label analysis of GABA-like and GAD-like immunoreactivity in rabbit retina. Vision Res., 27:23–30.

    PubMed  Google Scholar 

  12. Chun, M. H. and Wassle, H. 1989. GABA-like immunoreactivity in the cat retina: electron microscopy. J. Comp. Neurol. 279:55–67.

    PubMed  Google Scholar 

  13. Wassle, H., and Chun, M. H. 1989. GABA-like immunoreactivity in the cat retina: light microscopy. J. Comp. Neurol. 279:43–54.

    PubMed  Google Scholar 

  14. Yazulla, S. 1985. Factors controlling the release of GABA from goldfish retinal horizontal cells. Neurosci. Res., Suppl. 2, S147-S165.

    Google Scholar 

  15. Yazulla, S., and Brecha, N. 1980. Binding and uptake of the GABA analogue,3H-muscimol, in the retinas of goldfish and chicken. Invest. Ophthalmol., 19:1415–1426.

    Google Scholar 

  16. Yazulla, S., and Kleinschmidt, J. 1983. Carrier-mediated release of3H-GABA from goldfish retinal horizontal cells. Brain Res., 263:63–75.

    PubMed  Google Scholar 

  17. Yazulla, S. 1981. GABAergic synapses in the goldfish retina: an autoradiographic study of3H-muscimol and 3H-GABA binding. J. Comp. Neurol. 200:83–93.

    PubMed  Google Scholar 

  18. Wenthold, R. J., Zempel, J. M., Parakkal, M. H., Reeks, K. A., and Altschuler, R. A. 1986. Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Res. 380:7–18.

    PubMed  Google Scholar 

  19. Su, Y. Y. T., Wu, J.-Y., and Lam, D. M. K. 1983. Species specifities ofl-glutamic acid decarboxylase: Immunochemical comparisons. Neurochem. Intl. 5:587–592.

    Google Scholar 

  20. Lin, C.-T., Li, H.-Z., and Wu, J.-Y. 1983. Immunocytochemical localization ofl-glutamate decarboxylase, gamma aminobutyric acid transaminase, cysteine-sulfinic acid decarboxylase, aspartate aminotransferase and somatostatin in rat retina. Brain Res. 270:273–283.

    PubMed  Google Scholar 

  21. Vitorica, J., Park, D., Chin, G., and, de Blas, A. L. 1988. Monoclonal antibodies and conventional antisera to the GABAA receptor/benzodiazepine receptor/Cl channel complex. J. Neurosci. 8:615–622.

    PubMed  Google Scholar 

  22. Eldred, W. D., Zucker, C., Karten, H. J., and Yazulla, S. 1983. Comparison of fixation and penetration enhancement techniques for use in ultra-structural immunocytochemistry. J. Histochem. Cytochem. 31:285–292.

    PubMed  Google Scholar 

  23. Mosinger, J. L., and Yazulla, S. 1985. Co-localization of3H-GABA uptake and GAD-like immunoreactivity in amacrine cells of rabbit retina. J. Comp. Neurol., 240:396–406.

    PubMed  Google Scholar 

  24. Yazulla, S. Studholme, K. M., and Wu, J.-Y. 1986. Comparative distribution of3H-GABA uptake and GAD-immunoreactivity in goldfish retinal amacrine cells: a double-label analysis. J. Comp. Neurol. 244:149–162.

    PubMed  Google Scholar 

  25. Krogsgaard-Larsen, P., and Johnston, G. A. R. 1978. Structure activity studies on the inhibition of GABA binding to rat brain membranes by muscimol and related compounds. J. Neurochem. 30:1377–1382.

    PubMed  Google Scholar 

  26. Johnston, G. A. R., Kennedy, S. M. E., and Lodge, D. 1978. Muscimol uptake, release and binding in rat brain slices. J. Neurochem. 31:1519–1523.

    PubMed  Google Scholar 

  27. Ball, A. K., and Brandon, C. 1986, Localization of [3H]-GABA,-muscimol, and — glycine uptake in goldfish retinas stained for glutamate decarboxylase. J. Neurosci. 6:1621–1627.

    PubMed  Google Scholar 

  28. Ball, A. K. 1987. Immunocytochemical and autoradiographic localization of GABAergic neurons in the goldfish retina. J. Comp. Neurol. 255:317–325.

    PubMed  Google Scholar 

  29. Chun, M. H., Wassle, H., and Brecha, N. 1988. Colocalization of [3H]muscimol uptake and choline acetyltransferase immunoreactivity in amacrine cells of the cat retina. Neurosci. Lttr. 94:259–263.

    Google Scholar 

  30. Hendrickson, A., Tyan, M., Noble, B., and Wu. J.-Y. 1985. Localization of3H-muscimol and antisera to GABA and glutamic acid decarboxylase within the same neurons in monkey retina. Brain Res. 348:391–396.

    PubMed  Google Scholar 

  31. Pourcho, R. G., and Goebel, D. J. 1983. Neuronal subpopulations in cat retina which accumulate the GABA agonist,3H-muscimol: a combined Golgi and autoradiographic study. J. Comp. Neurol. 219:25–35.

    PubMed  Google Scholar 

  32. Agardh, E., and Ehinger, B. 1982.3H-muscimol,3H-nipecotic acid and3H-isoguavacine as autoradiographic markers for GABAergic neurotransmission. J. Neural Trans. 54:1–18.

    Google Scholar 

  33. Iversen, L. I., and Neal, M. J. 1968. The uptake of3H-GABA by slices of rat cerebral cortex. J. Neurochem. 15:1141–1149.

    PubMed  Google Scholar 

  34. Iversen, L. L. 1971. Role of transmitter uptake mechanisms in synaptic neurotransmission. Br. J. Pharmacol. 41:571–591.

    PubMed  Google Scholar 

  35. Martin, D. L. 1976. Carrier-mediated transport and removal of GABA from synaptic regions. pages 347–387,in Roberts, E., Chase, T. N. and Tower, D. B. (eds) GABA in Nervous System and Function, Raven Press, New York.

    Google Scholar 

  36. Storm-Mathisen, J., Fonnum, F., and Malthe-Sorenssen, D. 1976. GABA uptake in nerve terminals, pages 387–394.in Roberts, E., Chase, T. N. and Tower, D. B. (eds), GABA in Nervous System and Function, Raven Press, New York.

    Google Scholar 

  37. Lam, D. M. K., and Steinman, L. 1971. The uptake of [γ-3H] aminobutyric acid in the goldfish retina. Proc. Nat. Acad. Sci. USA 2777–2781.

  38. Marc, R. E., Stell, W. K., Bok, D., and Lam, D. M. K. 1978. GABAergic pathways in the goldfish retina. J. Comp. Neurol. 182:221–246.

    PubMed  Google Scholar 

  39. Yazulla, S., and Brecha, N. 1981. Localized binding of3H-muscimol to synapses in the chick retina. Proc. Nat. Acad. Sci., U.S.A. 78:643–647.

    Google Scholar 

  40. Zucker, C., Yazulla, S., and Wu, Y.-Y. 1984. Noncorrespondence of3H-GABA uptake and GAD-localization in goldfish amacrine cells. Brain Res., 298:154–158.

    PubMed  Google Scholar 

  41. Marc, R. E. 1986. Neurochemical stratification of the inner plexiform layer of the vertebrate retina. Vision Res. 26:223–238.

    PubMed  Google Scholar 

  42. Muller, J. F., and Marc, R. E. 1990. GABA-ergic and glycinergic pathways in the inner plexiform layer of the goldfish retina. J. Comp. Neurol. 291:281–304.

    PubMed  Google Scholar 

  43. Marshall, J., and Voaden, M. J. 1974. An autoradiographic study of the cells accumulating3H-gamma-aminobutyric acid in the isolated retinas of pigeons and chickens. Invest. Ophthalmol. 13:602–607.

    PubMed  Google Scholar 

  44. Schon, F., and Kelly, J. S. 1975. Selective uptake of β-alanine by glia: association with the glial uptake system for GABA. Brain Res. 86:243–257.

    PubMed  Google Scholar 

  45. Yazulla, S., and Kleinschmidt, J. 1982. Dopamine blocks carrier-mediated release of GABA from retinal horizontal cells. Brain Res., 233:211–215.

    PubMed  Google Scholar 

  46. Yazulla, S. 1983. Stimulation of GABA release from retinal horizontal cells by potassium and acidic amino acid agonists. Brain Res., 275:61–74.

    PubMed  Google Scholar 

  47. Schwartz, E. A. 1982. Calcium-independent release of GABA from isolated horizontal cells for the toad retina. J. Physiol. (Lond.) 323:211–227.

    Google Scholar 

  48. Ayoub, G. S., and Lam, D. M. K. 1984. The release of γ-aminobutyric acid from horizontal cells of the goldfish (Carassius auratus) retina. J. Physiol. 355:191–214.

    PubMed  Google Scholar 

  49. Massey, S. C. 1990. Cell types using glutamate as a neurotransmitter in the vertebrate retina. Prog. Retinal Res. 9:399–426.

    Google Scholar 

  50. Vaughn, J. E., Famiglietti, Jr., E. V., Barber, R. P., Saito, K., Roberts, E., and Ribak, C. E. 1981. GABAergic amacrine cells in rat retina: immunocytochemical identification and synaptic connectivity. J. Comp. Neurol. 197:113–127.

    PubMed  Google Scholar 

  51. Yazulla, S., Studholme, K., and Wu, J.-Y. 1987. GABAergic input to the synaptic terminals of mb1 bipolar cells in the goldfish retina. Brain Res. 411:400–405.

    PubMed  Google Scholar 

  52. Hyde, J. C., and Robinson, N. 1974. Localization of sites of GABA catabolism in the rat retina. Nature (Lond.) 248:432–433.

    Google Scholar 

  53. Neal, M. J., Cunningham, J. R., Shah, M. A., and Yazulla, S. 1989. Immunocytochemical evidence that vigabatrin in rats causes GABA accumulation in glial cells of the retina. Neurosci. Lett. 98:29–32.

    PubMed  Google Scholar 

  54. Bruun, A., Ehinger, B. and Systma, V. M. 1984. Neurotransmitter localization in the Skate retina. Brain Res. 295:233–249.

    PubMed  Google Scholar 

  55. Blanks, J. C., and Roffler-Tarlov, S. 1982. Differential localization of radioactive gamma-aminobutyric acid and muscimol in isolated andin vivo mouse retina. Expt. Eye Res. 35:573–584.

    Google Scholar 

  56. Bruun, A., and Ehinger, B. 1974. Uptake of certain possible neurotransmitters into retinal neurons of some mammals. Expt. Eye Res. 19:435–437.

    Google Scholar 

  57. Ehinger, B. 1977. Glial and neuronal uptake of GABA, glutamic acid, glutamine and glutathione in the rabbit retina. Expl. Eye Res. 25:221–234.

    Google Scholar 

  58. Neal, M. J., and Iversen, L. L. 1972. Autoradiographic localization of3H-GABA in rat retina. Nature, New Biol. 235:217–218.

    Google Scholar 

  59. Sarthy, P. V. 1983. Release of [3H] γ-aminobutyric acid from glial (Muller) cells of the rat retina: effects of K+, veratridine, and ethylenediamine. J. Neurosci. 3:2494–2503.

    PubMed  Google Scholar 

  60. Mosinger, J. L., Studholme, K. M. and Yazulla, S. 1986. Immunocytochemical localization of GABA in the retina: A species comparison. Exp. Eye Res., 42:631–644.

    PubMed  Google Scholar 

  61. Agardh, E., Bruun, A., Ehinger, B., Ekstrom, P., van Veen, T., and Wu, J.-Y. 1987. Gamma-aminobutyric acid- and glutamic acid decarboxylase-immunoreactive neurons in the retinas of different vertebrates. J. Comp. Neurol. 258:622–630.

    PubMed  Google Scholar 

  62. Cubells, J. F., Walkley, S. U., and Makman, M. H. 1988. The effects of gabaculinein vivo on the distribution of GABA-like immunoreactivity in the rat retina. Brain Res. 458:82–90.

    PubMed  Google Scholar 

  63. Neal, M. J., and Bowery, N. G. 1979. Differential effects of veratridine and potassium depolarization on neuronal and glial GABA release. Brain Res. 167:337–343.

    PubMed  Google Scholar 

  64. Hurd, II, L. B., and Eldred, W. D. 1989. Localization of GABA-and GAD-like immunoreactivity in the turtle retina. Vis. Neurosci. 3:9–20.

    PubMed  Google Scholar 

  65. Brandon, C. 1985. Retinal GABA neurons: localization in vertebrate species using a new antiserum against rabbit brain glutamate decarboxylase. Brain Res. 344:286–295.

    PubMed  Google Scholar 

  66. Su, Y. Y. T., Wu, J.-Y., and Lam, D. M. K. 1979. Purification of L-glutamic acid decarboxylase from catfish brain. J. Neurochem. 33:169–179.

    PubMed  Google Scholar 

  67. Kaufmann, D. L., McGinnis, J. F., Kreiger, N. R. and Tobin, A. J. 1986. Brain glutamate decarboxylase cloned in lambda-gtll: Fusion protein produces gamma-aminobutyric acid. Science 232:1138–1140.

    PubMed  Google Scholar 

  68. Yazulla, S., Studholme, K. M., Vitorica, J., and de Blas, A. L. 1989. Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. J. Comp. Neurol., 280:15–26.

    PubMed  Google Scholar 

  69. Ishida, A. T., Stell, W. K. and Lightfoot, D. O. 1980. Rod and cone inputs to bipolar cells in goldfish retina. J. Comp. Neurol. 191:315–335.

    PubMed  Google Scholar 

  70. Tachibana, M., and Kaneko, A. 1987. γ-aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proc. Nat. Acad, Sci. USA 84:3501–3505.

    Google Scholar 

  71. Ymer, S., Schofield, P. R., Draguhn, A., Werner, P., Kohler, M. and Seeburg, P. H. 1989. GABAA receptor subunit heterogeneity: functional expression of cloned cDNAs. The EMBO Journal 8:1665–1670.

    PubMed  Google Scholar 

  72. Engbretson, G. A., Anderson, K. J., and Wu, J.-Y. 1988. GABA as a potential transmitter in lizard photoreceptors: Immunocytochemical and biochemical evidence. J. Comp. Neurol. 278:461–471.

    PubMed  Google Scholar 

  73. Nishimura, Y., Schwartz, M. L., and Rakic, P. 1986. GABA and GAD immunoreactivity of photoreceptor terminals in primate retina. Nature (Lond.) 320:753–756.

    Google Scholar 

  74. Yazulla, S. 1986. Is GABA the neurotransmitter for some photoreceptors? Nature, 320:685–685.

    PubMed  Google Scholar 

  75. Yazulla, S. 1985. Evoked efflux of3H-GABA from goldfish retina in the dark. Brain Res., 325:171–180.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eugene Roberts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazulla, S. The mismatch problem for GABAergic amacrine cells in goldfish retina: Resolution and other issues. Neurochem Res 16, 327–339 (1991). https://doi.org/10.1007/BF00966096

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966096

Key Words

Navigation