Skip to main content

Advertisement

Log in

GABAergic neurotransmission and retinal ganglion cell function

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell’s membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON–OFF and sustained–transient ganglion cell dichotomy in both nonmammalian and mammalian retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackert JM, Wu SH, Lee JC, Abrams J, Hu EH, Perlman I, Bloomfield SA (2006) Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. J Neurosci 26:4206–4215

    CAS  PubMed  Google Scholar 

  • Ackert JM, Farajian R, Völgyi B, Bloomfield SA (2009) GABA blockade unmasks an OFF response in ON direction selective ganglion cells in the mammalian retina. J Physiol 587:4481–4495

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ames A, Pollen DA (1969) Neurotransmission in central nervous tissue: a study of isolated rabbit retina. J Neurophysiol 32:424–442

    PubMed  Google Scholar 

  • Ariel M, Adolph AR (1985) Neurotransmitter inputs to directionally sensitive turtle retinal ganglion cells. J Neurophysiol 54:1123–1143

    CAS  PubMed  Google Scholar 

  • Ariel M, Daw NW (1982) Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells. J Physiol 324:161–185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Auferkorte ON, Baden T, Kaushalya SK, Zabouri N, Rudolph U, Haverkamp S, Euler T (2012) GABA(A) receptors containing the α2 subunit are critical for direction-selective inhibition in the retina. PLoS ONE 7:e35109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Backstrom AC (1981) Effects of picrotoxin on sensitivity and receptive field properties of ganglion cells in the frog retina. Medical Biol 59:234–246

    CAS  Google Scholar 

  • Belgum JH, Dvorak DR, McReynolds JS (1982) Sustained synaptic input to ganglion cells of mudpuppy retina. J Physiol 326:91–108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belgum JH, Dvorak DR, McReynolds JS (1983) Sustained and transient synaptic inputs to on-off ganglion cells in the mudpuppy retina. J Physiol 340:599–610

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belgum JH, Dvorak DR, McReynolds JS (1984) Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells. J Physiol 354:273–276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belgum JH, Dvorak DR, McReynolds JS, Miyachi E (1987) Push-pull effect of surround illumination on excitatory and inhibitory inputs to mudpuppy retinal ganglion cells. J Physiol 388:233–243

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84:835–867

    CAS  PubMed  Google Scholar 

  • Bieda MC, Copenhagen DR (2000) Inhibition is not required for the production of transient spiking responses from retinal ganglion cells. Vis Neurosci 17:243–254

    CAS  PubMed  Google Scholar 

  • Bindokas VP, Ishida AT (1991) (−)-baclofen and gamma-aminobutyric acid inhibit calcium currents in isolated retinal ganglion cells. Proc Natl Acad Sci USA 88:10759–10763

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bolz J, Frumkes T, Voigt T, Wässle H (1985) Action and localization of gamma-aminobutyric acid in the cat retina. J Physiol 362:369–393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonaventure N, Wioland N (1981) Involvement of GABA in ganglion cell receptive field organization in the frog retina. Vision Res 21:1653–1655

    CAS  PubMed  Google Scholar 

  • Bonaventure N, Wioland N, Roussel G (1980) Effects of some amino acids (GABA, glycine, taurine) and of their antagonists (picrotoxin, strychnine) on spatial and temporal features of frog retinal ganglion cell responses. Pflugers Arch 385:51–64

    CAS  PubMed  Google Scholar 

  • Bormann J (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci 11:112–116

    CAS  PubMed  Google Scholar 

  • Borst A, Euler T (2011) Seeing things in motion: models, circuits, and mechanisms. Neuron 71:974–994

    CAS  PubMed  Google Scholar 

  • Brandstätter JH, Greferath U, Euler T, Wässle H (1995) Co-stratification of GABAA receptors with the directionally selective circuitry of the rat retina. Vis Neurosci 12:345–358

    PubMed  Google Scholar 

  • Brecha NC, Sternini C, Humphrey MF (1991) Cellular distribution of L-glutamate decarboxylase (GAD) and gamma-aminobutyric acidA (GABAA) receptor mRNAs in the retina. Cell Mol Neurobiol 11:497–509

    CAS  PubMed  Google Scholar 

  • Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    CAS  PubMed  Google Scholar 

  • Buldyrev I, Taylor WR (2013) Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. J Physiol 591:303–325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caldwell JH, Daw NW (1978) Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: changes in centre surround receptive fields. J Physiol 276:299–310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caldwell JH, Daw NW, Wyatt HJ (1978) Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol 276:277–298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang Y, Weiss DS (1999) Channel opening locks agonist onto the GABAC receptor. Nat Neurosci 2:219–225

    CAS  PubMed  Google Scholar 

  • Chen YC, Chiao CC (2008) Symmetric synaptic patterns between starburst amacrine cells and direction selective ganglion cells in the rabbit retina. J Comp Neurol 508:175–183

    PubMed  Google Scholar 

  • Chen X, Hsueh HA, Greenberg K, Werblin FS (2010) Three forms of spatial temporal feedforward inhibition are common to different ganglion cell types in rabbit retina. J Neurophysiol 103:2618–2632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chiao CC, Masland RH (2002) Starburst cells nondirectionally facilitate the responses of direction-selective retinal ganglion cells. J Neurosci 22:10509–10513

    CAS  PubMed  Google Scholar 

  • Cleland BG, Levick WR (1974) Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. J Physiol 240:421–456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cleland BG, Levick WR, Wässle H (1975) Physiological identification of a morphological class of cat retinal ganglion cells. J Physiol 248:151–171

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen JL (1985) Effects of glycine and GABA on the ganglion cels of the retina of the skate Raja erinacea. Brain Res 332:169–173

    CAS  PubMed  Google Scholar 

  • Cohen ED (1998) Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. J Neurophysiol 80:2975–2990

    CAS  PubMed  Google Scholar 

  • Cook PB, McReynolds JS (1998) Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci 1:714–719

    CAS  PubMed  Google Scholar 

  • Cook PB, Lukasiewicz PD, McReynolds JS (2000) GABA(C) receptors control adaptive changes in a glycinergic inhibitory pathway in salamander retina. J Neurosci 20:806–812

    CAS  PubMed  Google Scholar 

  • Crook JD, Davenport CM, Peterson BB, Packer OS, Detwiler PB, Dacey DM (2009) Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. J Neurosci 29:8372–8387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daniels JD (1974) Synaptic transmission in the vertebrate retina: Pharmacology via intracellular recordings. Ph.D.Thesis, University of California, Berkeley, California USA

  • Demb JB (2007) Cellular mechanisms for direction selectivity in the retina. Neuron 55:179–186

    CAS  PubMed  Google Scholar 

  • Dong CJ, Werblin RS (1998) Temporal contrast enhancement via GABAc feedback at bipolar terminals in the Ambistoma tigrinum retina. J Neurophysiol 79:2171–2180

    CAS  PubMed  Google Scholar 

  • Dowling JE (2012) The retina: an approachible part of the brain. Revised edition. The Belknap press of Harvard University Press, Cambridge, England

  • Eggers ED, Ichinose T, Sagdullaev BT, Lukasiewicz PD (2006) Retinal GABA receptors and visual processing: a model system for presynaptic inhibition. Cellsci Rev 2:50–67

    Google Scholar 

  • Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187:517–552

    PubMed Central  CAS  PubMed  Google Scholar 

  • Enz R, Cutting GR (1998) Molecular composition of GABAC receptors. Vision Res 38:1431–1441

    CAS  PubMed  Google Scholar 

  • Enz R, Brandstätter JH, Wässle H, Bormann J (1996) Immunocytochemical localization of the GABAC receptor r subunits in the mammalian retina. J Neurosci 16:4479–4490

    CAS  PubMed  Google Scholar 

  • Euler T, Detwiler PB, Denk W (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418:845–852

    CAS  PubMed  Google Scholar 

  • Famiglietti EV (2002) A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells. Vis Neurosci 19:145–162

    CAS  PubMed  Google Scholar 

  • Farajian R, Pan F, Akopian A, Völgyi B, Bloomfield SA (2011) Inhibitory masking of ON and OFF signals in mammalian ganglion cells. J Physiol 589:4473–4489

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feigenspan A, Bormann J (1994) Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. Eur J Pharmacol 288:97–104

    CAS  PubMed  Google Scholar 

  • Feigenspan A, Wässle H, Bormann J (1993) Pharmacology of GABA receptor Cl channels in rat retinal bipolar cells. Nature 361:159–162

    CAS  PubMed  Google Scholar 

  • Fletcher EL, Koulen P, Wässle H (1998) GABAA and GABAC receptors on mammalian rod bipolar cells. J Comp Neurol 396:351–365

    CAS  PubMed  Google Scholar 

  • Flores-Herr N, Protti DA, Wässle H (2001) Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. J Neurosci 21:4852–4863

    CAS  PubMed  Google Scholar 

  • Fried SI, Münch TA, Werblin FS (2002) Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420:411–414

    CAS  PubMed  Google Scholar 

  • Fried SI, Münch TA, Werblin FS (2005) Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina. Neuron 46:117–127

    CAS  PubMed  Google Scholar 

  • Frishman LJ (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, London, pp 139–183

    Google Scholar 

  • Frishman LJ, Linsenmeier RA (1982) Effects of picrotoxin and strychnine on non-linear responses of Y-type cat retinal ganglion cells. J Physiol 324:347–363

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frumkes T, Miller R, Slaughter M, Dacheux R (1981) Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. III. Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: a model. J Neurophysiol 45:783–804

    CAS  PubMed  Google Scholar 

  • Frumkes TE, Nelson R, Pflug R (1995) Functional role of GABA in cat retina: II effects of GABAA antagonists. Vis Neurosci 12:651–661

    CAS  PubMed  Google Scholar 

  • Fukuda Y, Hsiao CF, Watanabe M (1985) Morphological correlates of Y, X and W type ganglion cells in the cat’s retina. Vis Res 25:319–327

    CAS  PubMed  Google Scholar 

  • Gao F, Wu SM (1998) Characterization of spontaneous inhibitory synaptic currents in salamander retinal ganglion cells. J Neurophysiol 80:1752–1764

    CAS  PubMed  Google Scholar 

  • Glickman RD, Adolph AR, Dowling JE (1982) Inner plexiform circuits in the carp retina: effects of cholinergic agonists, GABA, and substance P on the ganglion cells. Brain Res 234:81–99

    CAS  PubMed  Google Scholar 

  • Greferath U, Müller F, Wässle H, Shivers B, Seeburg P (1993) Localization of GABAA receptors in the rat retina. Vis Neurosci 10:551–561

    CAS  PubMed  Google Scholar 

  • Greferath U, Grunert U, Muller F, Wassle H (1994) Localization of GABAA receptors in the rabbit retina. Cell Tissue Res 276:295–307

    CAS  PubMed  Google Scholar 

  • Greferath U, Grünert U, Fritschy JM, Stephenson A, Möhler H, Wässle H (1995) GABAA receptor subunits have differential distributions in the rat retina: in situ hybridization and immunohistochemistry. J Comp Neurol 353:553–571

    CAS  PubMed  Google Scholar 

  • Grünert U (2000) Distribution of GABA and glycine receptors on bipolar and ganglion cells in the mammalian retina. Microsc Res Tech 50:130–140

    PubMed  Google Scholar 

  • Grünert U, Hughes TE (1993) Immunohistochemical localization of GABAA receptors in the scotopic pathway of the cat retina. Cell Tissue Res 274:267–277

    PubMed  Google Scholar 

  • Grünert U, Greferath U, Boycott BB, Wässle (1993) Parasol (P alpha) ganglion-cells of the primate fovea: immunocytochemical staining with antibodies against GABAA-receptors. Vision Res 33:1–14

    PubMed  Google Scholar 

  • Grzywacz NM, Tootle JS, Amthor FR (1997) Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit’s retinal directional selectivity? Vis Neurosci 14:39–54

    CAS  PubMed  Google Scholar 

  • Heidelberger R, Matthews G (1991) Inhibition of calcium influx and calcium current by gamma-aminobutyric acid in single synaptic terminals. Proc Natl Acad Sci USA 88:7135–7139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, Gainetdinov RR, Caron MG, Eggers ED, Frishman LJ, McCall MA, Arshavsky VY (2011) Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron 72:101–110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hughes TE, Carey RG, Vitorica J, de Blas AL, Karten HJ (1989) Immunohistochemical localization of GABAA receptors in the retina of the new world primate Saimiri sciureus. Vis Neurosci 2:565–581

    CAS  PubMed  Google Scholar 

  • Hughes TE, Grünert U, Karten HJ (1991) GABAA receptors in the retina of the cat: an immunohistochemical study of wholemounts, sections, and dissociated cells. Vis Neurosci 6:229–238

    CAS  PubMed  Google Scholar 

  • Hull C, Li G-L, von Gersdorff H (2006) GABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal. J Neurosci 26:6979–6984

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ichinose T, Lukasiewicz PD (2002) GABA transporters regulate inhibition in the retina by limiting GABA(C) receptor activation. J Neurosci 22:3285–3292

    CAS  PubMed  Google Scholar 

  • Ichinose T, Lukasiewicz PD (2005) Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells. J Physiol 565:517–535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ikeda H, Sheardown MJ (1983) Transmitters mediating inhibition of ganglion cells in the cat retina: iontophoretic studies in vivo. Neurosci 8:837–853

    CAS  Google Scholar 

  • Ikeda H, Hankins MW, Kay CD (1990) Actions of baclofen and phaclofen upon ON- and OFF-ganglion cells in the cat retina. Eur J Pharmacol 190:1–9

    CAS  PubMed  Google Scholar 

  • Jensen RJ (2012) Blocking GABA(C) receptors increases light responsiveness of retinal ganglion cells in a rat model of retinitis pigmentosa. Exp Eye Res 105:21–26

    CAS  PubMed  Google Scholar 

  • Jeon CJ, Kong JH, Strettoi E, Rockhill R, Stasheff SF, Masland RH (2002) Pattern of synaptic excitation and inhibition upon direction-selective retinal ganglion cells. J Comp Neurol 449:195–205

    PubMed  Google Scholar 

  • Kanjhan R, Sivyer B (2010) Two types of ON direction-selective ganglion cells in rabbit retina. Neurosci Lett 483:105–109

    CAS  PubMed  Google Scholar 

  • Kirby AW (1979) The effect of strychnine, bicuculline, and picrotoxin on X and Y cells in the cat retina. J Gen Physiol 74:71–84

    CAS  PubMed  Google Scholar 

  • Kirby AW, Enroth-Cugell C (1976) The involvement of gamma-aminobutyric acid in the organization of cat retinal ganglion cell receptive fields: a study with picrotoxin and bicuculline. J Gen Physiol 68:465–484

    CAS  PubMed  Google Scholar 

  • Kirby AW, Schweitzer-Tong D (1981a) GABA-antagonists and spatial summation in Y-type cat retinal ganglion cells. J Physiol 312:335–344

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirby AW, Schweitzer-Tong D (1981b) Gaba-antagonists alter spatial summation in receptive field centres of rod- but not cone-drive cat retinal ganglion Y-cells. J Physiol 320:303–308

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kittila CA, Massey SC (1995) The effect of ON pathway blockade on directional selectivity in rabbit retina. J Neurophysiol 73:703–712

    CAS  PubMed  Google Scholar 

  • Koulen P, Sassoè-Pognetto M, Grünert U, Wässle H (1996) Selective clustering of GABA(A) and glycine receptors in the mammalian retina. J Neurosci 16:2127–2140

    CAS  PubMed  Google Scholar 

  • Koulen P, Brandstätter JH, Kröger S, Enz R, Bormann J, Wässle H (1997) Immunocytochemical localization of the GABA(C) receptor rho subunits in the cat, goldfish, and chicken retina. J Comp Neurol 380:520–532

    CAS  PubMed  Google Scholar 

  • Koulen P, Brandstätter JH, Enz R, Bormann J, Wässle H (1998a) Synaptic clustering of GABAC receptor r-subunits in the rat retina. Eur J Neurosci 10:115–127

    CAS  PubMed  Google Scholar 

  • Koulen P, Malitschek B, Kuhn R, Bettler B, Wässle H, Brandstätter JH (1998b) Presynaptic and postsynaptic localization of GABA(B) receptors in neurons of the rat retina. Eur J Neurosci 10:1446–1456

    CAS  PubMed  Google Scholar 

  • Lasater EM, Lam DM (1984) The identification and some functions of GABAergic neurons in the proximal retina of the catfish. Vision Res 24:875–881

    CAS  PubMed  Google Scholar 

  • Lee S, Zhou ZJ (2006) The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51:787–799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Kim K, Zhou ZJ (2010) Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron 68:1159–1172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Levick WR (1967) Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina. J Physiol 188:285–307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Zhou Y, Gong HQ, Liang PJ (2007) Contribution of the GABAergic pathway(s) to the correlated activities of chickenretinal ganglion cells. Brain Res 1177:37–46

    CAS  PubMed  Google Scholar 

  • Liu X, Zhang YY, Gong HQ, Liang PJ (2009) The GABA(A) receptor-mediated inhibitory pathway increases the correlated activities in retinal ganglion cells. Acta Physiol Sinica 61:99–107

    CAS  PubMed  Google Scholar 

  • Lukasiewicz PD, Shields CR (1998) Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses. J Neurophysiol 79:3157–3167

    CAS  PubMed  Google Scholar 

  • Lukasiewicz P, Werblin F (1994) A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina. J Neurosci 14:1213–1223

    CAS  PubMed  Google Scholar 

  • Lukasiewicz PD, Eggers ED, Sagdullaev BT, McCall MA (2004) GABAC receptor-mediated inhibition in the retina. Vis Res 44:3289–3296

    CAS  PubMed  Google Scholar 

  • Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602

    CAS  PubMed  Google Scholar 

  • Macri J, Martin PR, Grünert U (2000) Distribution of the alpha1 subunit of the GABA(A) receptor on midget and parasol ganglion cells in the retina of the common marmoset Callithrix jacchus. Vis Neurosci 17:437–448

    CAS  PubMed  Google Scholar 

  • Maguire G, Maple B, Lukasiewicz P, Werblin F (1989) Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proc Natl Acad Sci USA 86:10144–10147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marc RE (1992) Structural organization of GABAergic circuitry in ectotherm retinas. Prog Brain Res 90:61–92

    CAS  PubMed  Google Scholar 

  • Marchiafava PL (1979) The responses of retinal ganglion cells to stationary and moving visual stimuli. Vision Res 19:1203–1211

    CAS  PubMed  Google Scholar 

  • Masland RH (2001) Neuronal diversity in the retina. Curr Opin Neurobiol 11:431–436

    CAS  PubMed  Google Scholar 

  • Massey SC, Linn DM, Kittila CA, Mirza W (1997) Contributions of GABAA receptors and GABAC receptors to acetylcholine release and directional selectivity in the rabbit retina. Vis Neurosci 14:939–948

    CAS  PubMed  Google Scholar 

  • Matthews G, Ayoub GS, Heidelberger R (1994) Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology. J Neurosci 14:1079–1090

    CAS  PubMed  Google Scholar 

  • McMahon MJ, Packer OS, Dacey DM (2004) The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. J Neurosci 24:3736–3745

    CAS  PubMed  Google Scholar 

  • Miller RF, Dacheux RF, Frumkes TE (1977) Amacrine cells in Necturus retina: evidence for independent gamma-aminobutyric acid- and glycine-releasing neurons. Science 198:748–750

    CAS  PubMed  Google Scholar 

  • Miller RF, Frumkes TE, Slaughter M, Dacheux RF (1981) Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppyretina II: Amacrine and ganglion cells. J Neurophysiol 45:764–782

    CAS  PubMed  Google Scholar 

  • Müller F, Boos R, Wässle H (1992) Actions of GABAergic ligands on brisk ganglion cells in the cat retina. Vis Neurosci 9:415–425

    PubMed  Google Scholar 

  • Negishi K, Kato S, Teranishi T, Laufer M (1978) Dual actions of some amino acids on spike discharges in the carp retina. Brain Res 148:67–84

    CAS  PubMed  Google Scholar 

  • Nehring RB, Horikawa HP, El Far O, Kneussel M, Brandstätter JH, Stamm S, Wischmeyer E, Betz H, Karschin A (2000) The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J Biol Chem 275:35185–35191

    CAS  PubMed  Google Scholar 

  • Nirenberg S, Meister M (1997) The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron 18:637–650

    CAS  PubMed  Google Scholar 

  • Ogurusu T, Yanagi K, Watanabe M, Fukaya M, Shingai R (1999) Localization of GABA receptor rho 2 and rho 3 subunits in rat brain and functional expression of homooligomeric rho 3 receptors and heterooligomeric rho 2 rho 3 receptors. Receptors Channels 6:463–475

    CAS  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid (A) receptors: classification on the basis of subunit composition, pharmacology, and function update. Pharmacol Rev 60:243–260

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2009) GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ong J, Kerr DI (2000) Recent advances in GABAB receptors: from pharmacology to molecular biology. Acta Pharmacol Sin 21:111–123

    CAS  PubMed  Google Scholar 

  • Padgett CL, Slesinger PA (2010) GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol 58:123–147

    CAS  PubMed  Google Scholar 

  • Palmer MJ (2006) Functional segregation of synaptic GABAA and GABAC receptors in goldfish bipolar cell terminals. J Physiol 577:45–53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pan Z, Lipton S (1995) Multiple GABA receptor subtypes mediate inhibition of calcium influx at rat retinal bipolar cell terminals. J Neurosci 15:2668–2679

    CAS  PubMed  Google Scholar 

  • Pan Y, Qian H (2005) Interactions between rho and gamma2 subunits of the GABA receptor. J Neurochem 94:482–490

    CAS  PubMed  Google Scholar 

  • Pan ZH, Slaughter MM (1991) Control of retinal information coding by GABAB receptors. J Neurosci 11:1810–1821

    CAS  PubMed  Google Scholar 

  • Park SJ, Kim IJ, Looger LL, Demb JB, Borghuis BG (2014) Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning. J Neurosci 34:3976–3981

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peichl L, Wässle H (1981) Morphological identification of on- and off-centre brisk transient (Y) cells in the cat retina. Proc R Soc Lond B Biol Sci 212:139–153

    CAS  PubMed  Google Scholar 

  • Perlman I (1995) The electroretinogram: ERG. In: Kolb H, Fernandez E, Nelsonm R (eds) Webvision: The organization of the retina and visual system (internet). Salt Lake City (UT), University of Utah Health Sciences Center. http://www.ncbi.nlm.nih.gov/books/NBK11530/

  • Pinard A, Seddik R, Bettler B (2010) GABAB receptors: physiological functions and mechanisms of diversity. Adv Pharmacol 58:231–255

    CAS  PubMed  Google Scholar 

  • Popova E (2014) Ionotropic GABA receptors and distal retinal ON and OFF responses. Scientifica Article ID 149187, p 23. http://dx.doi.org/10.1155/2014/149187

  • Popova E, Mitova L, Vitanova L, Kupenova P (2003) Effect of GABAergic blockade on light responses of frog retinal ganglion cells. Comp Biochem Physiol 134C:175–187

  • Priest TD, Robbins J, Ikeda H (1985) The action of inhibitory neurotransmitters, gamma-aminobutyric acid and glycine may distinguish between the area centralis and the peripheral retina in cats. Vis Res 25:1761–1770

    CAS  PubMed  Google Scholar 

  • Protti DA, Gerschenfeld HM, Llano I (1997) GABAergic and glycinergic IPSCs in ganglion cells of rat retinal slices. J Neurosci 17:6075–6085

    CAS  PubMed  Google Scholar 

  • Roska B, Werblin F (2001) Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410:583–587

    CAS  PubMed  Google Scholar 

  • Roska B, Nemeth E, Orzo L, Werblin FS (2000) Three levels of lateral inhibition: a space-time study of the retina of the tiger salamander. J Neurosci 20:1941–1951

    CAS  PubMed  Google Scholar 

  • Roska B, Molnar A, Werblin FS (2006) Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. J Neurophysiol 95:3810–3822

    PubMed  Google Scholar 

  • Rotolo TC, Dacheux RF (2003a) Evidence for glycine, GABAA, and GABAB receptors on rabbit OFF-alpha ganglion cells. Vis Neurosci 20:285–296

    PubMed  Google Scholar 

  • Rotolo TC, Dacheux RF (2003b) Two neuropharmacological types of rabbit ON-alpha ganglion cells express GABAC receptors. Vis Neurosci 20:373–384

    PubMed  Google Scholar 

  • Russell TL, Werblin FS (2010) Retinal synaptic pathways underlying the response of the rabbit local edge detector. J Neurophysiol 103:2757–2769

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sagdullaev BT, McCall MA, Lukasiewicz PD (2006) Presynaptic inhibition modulates spillover, creating distinct dynamic response ranges of sensory output. Neuron 50:923–935

    CAS  PubMed  Google Scholar 

  • Saito H (1981) The effects of strychnine and bicuculline on the responses of X- and Y-cells of the isolated eye-cut preparation of the cat. Brain Res 212:243–248

    CAS  PubMed  Google Scholar 

  • Saito H (1983) Pharmacological and morphological differences between X- and Y-type ganglion cells in the cat’s retina. Vis Res 23:1299–1308

    CAS  PubMed  Google Scholar 

  • Sakmann B, Creutzfeldt OD (1969) Scotopic and mesopic light adaptation in the cat’s retina. Pflugers Arch 313:168–185

    CAS  PubMed  Google Scholar 

  • Schellart NA, van Acker HF, Spekreijse H (1984) Influence of GABA on the spectral and spatial coding of goldfish retinal ganglion cells. Neurosci Lett 48:31–36

    CAS  PubMed  Google Scholar 

  • Schubert T, Hoon M, Euler T, Lukasiewicz PD, Wong RO (2013) Developmental regulation and activity-dependent maintenance of GABAergic presynaptic inhibition onto rod bipolar cell axonal terminals. Neuron 78:124–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shapley R, Perry VH (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 9:229–235

    Google Scholar 

  • Shen W, Slaughter MM (1997) Internal calcium release modulates the affinity of metabotropic GABA receptors. Invest Ophthalmol Vis Sci 38:S1141

    Google Scholar 

  • Shen W, Slaughter MM (1999) Metabotropic GABA receptors facilitate L-type and inhibit N-type calcium channels in single salamander retinal neurons. J Physiol 516:711–718

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen W, Slaughter MM (2001) Multireceptor GABAergic regulation of synaptic communication in amphibian retina. J Physiol 530:55–67

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sivyer B, Williams SR (2013) Direction selectivity is computed by active dendritic integration in retinal ganglion cells. Nat Neurosci 16:1848–1856

    CAS  PubMed  Google Scholar 

  • Slaughter MM, Bai SH (1989) Differential effects of baclofen on sustained and transient cells in the mudpuppy retina. J Neurophysiol 61:374–381

    CAS  PubMed  Google Scholar 

  • Smith RD, Grzywacz NM, Borg-Graham LJ (1996) Is the input to a GABAergic synapse the sole asymmetry in turtle’s retinal directional selectivity? Vis Neurosci 13:423–439

    CAS  PubMed  Google Scholar 

  • Song Y, Slaughter MM (2010) GABAB receptor feedback regulation of bipolar cell transmitter release. J Physiol 588:4937–4949

    PubMed Central  CAS  PubMed  Google Scholar 

  • Straschill M, Perwein J (1969) The inhibition of retinal ganglion cells by catecholeamines and gamma-aminobutyric acid. Pflugers Arch 312:45–54

    CAS  PubMed  Google Scholar 

  • Tachibana M, Kaneko A (1988) Retinal bipolar cells receive negative feedback input from GABAergic amacrine cells. Vis Neurosci 1:297–305

    CAS  PubMed  Google Scholar 

  • Tauck DL, Frosch MP, Lipton SA (1988) Characterization of GABA- and glycine-induced currents of solitary rodent retinal ganglion cells in culture. Neuroscience 27:193–203

    CAS  PubMed  Google Scholar 

  • Taylor WR, Smith RG (2011) Trigger features and excitation in the retina. Curr Opin Neurobiol 21:672–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thibos LN, Werblin FS (1978) The response properties of the steady antagonistic surround in the mudpuppy retina. J Physiol (Lond) 278:79–99

    CAS  Google Scholar 

  • Tian N, Slaughter MM (1994) Pharmacology of the GABAB receptor in amphibian retina. Brain Res 660:267–274

    CAS  PubMed  Google Scholar 

  • Tian N, Hwang TN, Copenhagen DR (1998) Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells. J Neurophysiol 80:1327–1340

    CAS  PubMed  Google Scholar 

  • Troy JB, Shou T (2002) The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research. Prog Retin Eye Res 21:263–302

    CAS  PubMed  Google Scholar 

  • Vardi N, Sterling P (1994) Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina. Vision Res 34:1235–1246

    CAS  PubMed  Google Scholar 

  • Victor JD, Shapley RM (1979) The nonlinear pathway of Y ganglion cells in the cat retina. J Gen Physiol 74:671–689

    CAS  PubMed  Google Scholar 

  • Vigh J, von Gersdorff H (2005) Prolonged reciprocal signaling via NMDA and GABA receptors at a retinal ribbon synapse. J Neurosci 25:11412–11423

    CAS  PubMed  Google Scholar 

  • Vigh J, Witkovsky P (2004) Neurotransmitter actions on transient amacrine and ganglion cells of the turtle retina. Vis Neurosci 21:1–11

    PubMed  Google Scholar 

  • Vitanova L, Kupenova P, Haverkamp S, Popova E, Mitova L, Wassle H (2001) Immunocytochemical and electrophysiological characterization of GABA receptors in the frog and turtle retina. Vision Res 41:691–704

    CAS  PubMed  Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    PubMed  Google Scholar 

  • Wässle H, Koulen P, Brandstätter JH, Fletcher EL, Becker CM (1998) Glycine and GABA receptors in the mammalian retina. Vis Res 38:1411–1430

    PubMed  Google Scholar 

  • Watanabe S, Murakami M (1984) Synaptic mechanisms of directional selectivity in ganglion cells of frog retina as revealed by intracellular recordings. Jpn J Physiol 34:497–511

    CAS  PubMed  Google Scholar 

  • Wei W, Hamby AM, Zhou K, Feller MB (2011) Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469:402–406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Werblin FS (1972) Lateral interaction at inner plexiform layer ofvertebrate retina: antagonistic responses to change. Science 178:1008–1010

    Google Scholar 

  • Werblin FS (1974) Control of retinal sensitivity II: lateral interactions at the outer plexiform layer. J Gen Physiol 63:62–87

    PubMed Central  CAS  PubMed  Google Scholar 

  • Werblin FS (1977) Regenerative amacrine cell depolarization and formation of on-off ganglion cell response. J Physiol 264:767–785

    PubMed Central  CAS  PubMed  Google Scholar 

  • Werblin FS (2011) The retinal hypercircuit: a repeating synaptic interactive motif underlying visual function. J Physiol 589:3691–3702

    PubMed Central  CAS  PubMed  Google Scholar 

  • Werblin FS, Copenhagen DR (1974) Control of retinal sensitivity. III. Lateral interactions at the inner plexiform layer. J Gen Physiol 63:88–110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu SM, Maple BR (1998) Amino acid neurotransmitters in the retina: a functional overview. Vis Res 38:1371–1384

    CAS  PubMed  Google Scholar 

  • Wunk DF, Werblin FS (1979) Synaptic inputs to the ganglion cells in the tiger salamander retina. J Gen Physiol 73:265–286

    CAS  PubMed  Google Scholar 

  • Wyatt HJ, Daw NW (1976) Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science 191:204–205

    CAS  PubMed  Google Scholar 

  • Yang X-L (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 73:127–150

    CAS  PubMed  Google Scholar 

  • Yazulla S (1986) GABAergic mechanisms in the retina. In: Osborne N, Chader J (eds) Progress in retinal research. Pergamon Press, New York, pp 1–52

    Google Scholar 

  • Yazulla S, Studholme KM, Vitorica J, de Blas AL (1989) Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. J Comp Neurol 280:15–26

    CAS  PubMed  Google Scholar 

  • Yeh HH, Grigorenko EV, Veruki ML (1996) Correlation between a bicuculline-resistant response to GABA and GABAA receptor rho 1 subunit expression in single rat retinal bipolar cells. Vis Neurosci 13:283–292

    CAS  PubMed  Google Scholar 

  • Zhang J, Slaughter MM (1995) Preferential suppression of the ON pathway by GABAC receptors in the amphibian retina. J Neurophysiol 74:1583–1592

    CAS  PubMed  Google Scholar 

  • Zhang J, Yang XL (1999) GABA(B) receptors in Müller cells of the bullfrog retina. Neuroreport 10:1833–1836

    CAS  PubMed  Google Scholar 

  • Zhang D, Pan ZH, Zhang X, Brideau AD, Lipton SA (1995) Cloning of a gamma-aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. Proc Natl Acad Sci USA 92:11756–11760

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Shen W, Slaughter MM (1997a) Two metabotropic gamma-aminobutyric acid receptors differentially modulate calcium currents in retinal ganglion cells. J Gen Physiol 110:45–58

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Jung CS, Slaughter MM (1997b) Serial inhibitory synapses in retina. Vis Neurosci 14:553–563

    CAS  PubMed  Google Scholar 

  • Zhang C, Bettler B, Duvoisin RM (1998) Differential localization of GABA(B) receptors in the mouse retina. Neuroreport 9:3493–3497

    CAS  PubMed  Google Scholar 

  • Zhou ZJ, Lee S (2008) Synaptic physiology of direction selectivity in the retina. J Physiol 586:4371–4376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zucker CL, Ehinger B (1998) Gamma-aminobutyric acidA receptors on a bistratified amacrine cell type in the rabbit retina. J Comp Neurol 393:309–319

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Popova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A 201, 261–283 (2015). https://doi.org/10.1007/s00359-015-0981-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-0981-z

Keywords

Navigation