Skip to main content
Log in

ACTH, cyclic nucleotides, and brain protein phosphorylation in vitro

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Endogenous phosphorylation of proteins from rat brain synaptosomal plasma membranes was studied in vitro. Cyclic AMP (cAMP) markedly stimulated32P incorporation in three protein bands with molecular weights of 75,000, 57,000, and 54,000, respectively. The effect of the behaviorally active peptide ACTH1–24 on this endogenous phosphorylation in vitro was studied using peptide concentrations from 10−10 to 10−4 M. In a number of protein bands, a biphasic effect of ACTH1–24 was observed: in concentrations of 10−4–10−5 M, a reduced amount of32P was found; in concentrations of 10−6–10−7 M, hardly any effect could be detected, whereas consistently at concentrations around 10−8 M, a significant decrease was again observed. The phosphoprotein bands affected by in vitro addition of ACTH1–24 were of a smaller molecular weight than those affected by in vitro addition of cAMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walton, K. G., DeLorenzo, R. J., Curran, P. F., andGreengard, P. 1975. Regulation of protein phosphorylation and sodium transport in toad bladder. J. Gen. Phys. 65:153–177.

    Google Scholar 

  2. Greengard, P. 1976. Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature (London) 260:101–108.

    Google Scholar 

  3. Glassman, E., Gispen, W. H., Perumal, R., Machlus, B., andWilson, J. E. 1972. The effect of short experiences on the incorporation of phosphate into synaptosomal and non-histone acid extractable nuclear proteins from rat and mouse. 5th International Congress on Pharmacology, San Francisco, July 23–28th, p. 265 (abstract).

  4. Perumal, R., Gispen, W. H., Wilson, J. E., andGlassman, E. 1975, Phosphorylation of proteins from the brains of mice subjected to short-term behavioral experiences. Pages 201–207,in Progress in Brain Research,Gispen, W. H., Van Wimersma Greidanus, Tj. B., Bohus, B., andDe Wied, D. (eds.), Vol. 42, Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  5. Routtenberg, A., Ehrlich, Y. H., andRabjohns, R. R. 1975. Effect of a training experience of phosphorylation of a specific protein in neocortical and subcortical membrane preparations. Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:17.

    Google Scholar 

  6. De Wied, D. 1974. Pituitary-adrenal system hormones and behavior. Pages 653–666,in The Neurosciences, Third Study Program,Schmitt, F. O., andWorden, F. G. (eds.), Rockefeller University Press, New York.

    Google Scholar 

  7. Schotman, P., Reith, M. E. A., Van Wimersma Greidanus, Tj. B., Gispen, W. H., andDe Wied, D. 1976. Hypothalamic and pituitary peptide hormones and the central nervous system: with special reference to the neurochemical effects of ACTH. Pages 309–344,in Molecular and Functional Neurobiology,Gispen, W. H. (ed.), Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  8. Terenius, L. 1973. Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol. Toxicol. 32:317.

    Google Scholar 

  9. Routtenberg, A., andEhrlich, Y. H. 1975. Endogenous phosphorylation of four cerebral cortical membrane proteins: Role of cyclic nucleotides, ATP and divalent cations. Brain Res. 92:415–430.

    PubMed  Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  11. Lugtenberg, B., Meijers, J., Peters, R., van der Hoek, P., andvan Alphen, L. 1975. Electrophoretic resolution of the major outer membrane protein ofEscherichia coli K12 into four bands. FEBS Lett. 58:254–258.

    PubMed  Google Scholar 

  12. Ueda, T., Maeno, H., andGreengard, P. 1973. Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′,5′-monophosphate. J. Biol. Chem. 248:8295–8305.

    PubMed  Google Scholar 

  13. Ehrlich, Y. H., andRouttenberg, A. 1974. Cyclic AMP regulates phosphorylation of three protein components of rat cerebral cortex membranes for thirty minutes. FEBS Lett. 45(1):237–243.

    PubMed  Google Scholar 

  14. Schotman, P., Gispen, W. H., Jansz, H. S., andDe Wied, D. 1972. Effects of ACTH analogues on macromolecule metabolism in the brain stem of hypophysectomized rats. Brain Res. 46:349–362.

    PubMed  Google Scholar 

  15. Reith, M. E. A., Schotman, P., andGispen, W. H. 1974. Hypophysectomy, ACTH1–10 and in vitro protein synthesis in rat brain stem slices. Brain Res. 81:571–575.

    PubMed  Google Scholar 

  16. Reith, M. E. A., Schotman, P., andGispen, W. H. 1975. Incorporation of [3H]leucine into brain stem protein fraction: The effect of a behaviorally active,N-terminal fragment of ACTH in hypophysectomized rats. Neurobiology 5:355–368.

    PubMed  Google Scholar 

  17. Reith, M. E. A., Schotman, P., andGispen, W. H. 1975. The neurotropic action of ACTH: Effects of ACTH-like peptides on the incorporation of leucine into protein of brain stem slices from hypophysectomized rats. Neurosci. Lett. 1:55–59.

    Google Scholar 

  18. Rudman, D., Scott, J. W., Del Rio, A. E., Houser, D. H., andSheen, S. 1974. Effect of melanotropic peptides on protein synthesis in mouse brain. Am. J. Physiol. 226:687–692.

    PubMed  Google Scholar 

  19. Rees, H. D., Brogan, L. L., Entingh, D. J., Dunn, A. J., Shinkman, P. G., Damstra-Entingh, T., Wilson, J. E., andGlassman, E. 1974. Effect of sensory stimulation on the uptake and incorporation of radioactive lysine into protein of mouse brain and liver. Brain Res. 68:143–156.

    PubMed  Google Scholar 

  20. Versteeg, D. H. G. 1973. Effect of two ACTH analogues on noradrenaline metabolism in rat brain. Brain Res. 49:483–485.

    PubMed  Google Scholar 

  21. Wiegant, V. M., andGispen, W. H. 1975. Behaviorally active ACTH analogs and brain cyclic AMP. Exp. Brain Res. 23(Suppl.):219.

    Google Scholar 

  22. Rudman, D., andIsaacs, J. W. 1975. Effect of intrathecal injection of melanotropiclipolytic peptides on the concentration of 3′,5′-cyclic adenosine monophosphate in cerebrospinal fluid. Endocrinology 97:1476–1480.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwiers, H., Veldhuis, H.D., Schotman, P. et al. ACTH, cyclic nucleotides, and brain protein phosphorylation in vitro. Neurochem Res 1, 669–677 (1976). https://doi.org/10.1007/BF00965607

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965607

Keywords

Navigation