Skip to main content
Log in

Transport complexes associated with slow axonal flow

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cytoskeletal proteins-neurofilament polypeptides, tubulin and actin-are transported along axons by slow transport. How or in what form they are transported is not known. One hypothesis is that they are assembled into the cytoskeleton at the cell body and transported as intact polymers down the axon. However, recent radiolabeling and photobleaching studies have shown that tubulin and actin exist in both a mobile phase and a stationary phase in the axon. Consequently, it is more likely that cytoskeletal proteins move along the axon in some form of transport complex and are assembled into a cytoskeleton which is stationary. In this overview we discuss these topics and consider the evidence for the existence of transport complexes associated with slow axonal flow. Such evidence includes the slow transport of particulate complexes containing tubulin and neurofilament polypeptides along reconstituted microtubules in vitro, and the coordinate slow transport of actin with actin-binding in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss, P., and Hiscoe, H. B. 1948. Experiments on the mechanism of nerve growth. J. Exp. Zool. 107:315–395.

    Google Scholar 

  2. Weiss, P. 1967. Neuronal dynamics, an essay by P. Weiss. Neurosci. Res. Progr. Bull. 5:371–400.

    Google Scholar 

  3. Dahlstrom, A. 1971. Axoplasmic transport (with particular respect to adrenergic neurons). Phil. Trans. Roy Soc. Lond. B 261:325–358.

    Google Scholar 

  4. Grafstein, B. and Forman, D. S. 1980. Intracellular transport in neurons. Physiol. Revs. 60:1167–1283.

    Google Scholar 

  5. Scheetz, M. P., Steuer, E. R., and Schroer, T. A. 1989. The mechanism and regulation of fast axonal transport. Trends Neurosci. 12:474–478.

    Google Scholar 

  6. Vallee, R. B., and Shpetner, H. S. 1990. Motor proteins of cytoplasmic microtubules. Annu. Rev. Biochem. 59:909–932.

    Google Scholar 

  7. Lasek, R. J., Garner, J. A., and Brady, S. T. 1984. Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99:212s-221s.

    Google Scholar 

  8. Black, M. M., and Lasek, R. J. 1979. Axonal transport of actin: Slow component b is the principal source of actin for the axon. Brain Res. 171:401–413.

    Google Scholar 

  9. Willard, M., Wiseman, M., Levine, J., and Skene, P. 1979. Axonal transport of actin in rabbit retinal ganglion cells. J. Cell Biol. 81:581–591.

    Google Scholar 

  10. Tashiro, T., Kurokawa, M., and Komiya, Y. 1984. Two populations of axonally transported tubulin differentiated by their interactions with neurofilaments. J. Neurochem. 43:1120–1125.

    Google Scholar 

  11. Oblinger, M. M., Brady, S. T., McQuarrie, I. G., and Lasek, J. 1987. Cytotopic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons. J. Neurosci. 7:453–462.

    Google Scholar 

  12. Tashiro, T., and Komiya, Y. 1989. Stable and dynamic forms of cytoskeletal proteins in slow axonal transport. J. Neurosci. 9:760–768.

    Google Scholar 

  13. Denoulet, P., Filliatreau, G., de Néchaud, B., Gros, F., and Di Giamberardino, L. 1989. Differential axonal transport of isotubulins in the motor axons of the rat sciatic nerve. J. Cell Biol. 108:965–971.

    Google Scholar 

  14. Heriot, K., Gambetti, P., and Lasek, R. J. 1985. Proteins transported in slow components a and b of axonal transport are distributed differently in the transverse plane of the axon. J. Cell Biol. 100:1167–1172.

    Google Scholar 

  15. Nixon, R. A., Fischer, I., and Lewis, S. E. 1990. Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: Tubulin and MAP 1A display distinct transport kinetics. J. Cell Biol. 110:437–448.

    Google Scholar 

  16. Garner, J. A. and Lasek, R. J. 1982. Cohesive axonal transport of the slow component b complex of polypeptides. J. Neurosci. 12:1824–1835.

    Google Scholar 

  17. Lasek, R. J. 1986. Polymer sliding in axons. J. Cell Sci. (Suppl.) 5:167–179.

    Google Scholar 

  18. Bamburg, J. R. 1988. The axonal cytoskeleton: stationary or moving matrix? Trends Neurosci: 11:248–249.

    Google Scholar 

  19. Hollenbeck, P. J. 1989. The transport and assembly of the axonal cytoskeleton. J. Cell Biol. 108:223–227.

    Google Scholar 

  20. Zenker, W., and Hohberg, E. 1973. A-α-nerve fibre: number of neurotubules in the stem fibre and in the terminal branches. J. Neurocytol. 2:143–148.

    Google Scholar 

  21. Nixon, R. A., and Logvinenko, K. B. 1986. Multiple fates of newly synthesized neurofilament proteins: Evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons. J. Cell Biol. 102:647–659.

    Google Scholar 

  22. Morris, J. R., and Lasek, R. J. 1984. Monomer-polymer equilibria in the axon: Direct measurement of tubulin and actin as polymcr and monomer in axoplasm. J. Cell Biol. 98:2064–2076.

    Google Scholar 

  23. Heidemann, S. R., Landers, J. M., and Hamborg, M. A. 1981. Polarity orientation of axonal microtubules. J. Cell Biol. 91:661–665.

    Google Scholar 

  24. Bamburg, J. R., Bray, D., and Chapman, K. 1986. Assembly of microtubules at the tip of growing axons. Nature. 321:788–790.

    Google Scholar 

  25. Ochs, S. 1975. A unitary concept of axoplasmic transport based on the transport filament hypothesis. Pages 189–194, in Bradley, W. G., Gardner-Medwin D. and Walton, J. N. (eds.), Third International Congress on Muscle Diseases, Excerpta Medica, Amsterdam.

    Google Scholar 

  26. Ochs, S., Jersild Jr, R. A., and Li, J.-M. 1989. Slow transport of freely movable cytoskeletal components shown by beading partition of nerve fibres in the cat. Neurosci. 33:421–430.

    Google Scholar 

  27. Lim, S.-S., Sammak, P. J., and Borisy, G. G. 1989. Progressive and spatially differentiated stability of microtubules in developing neuronal cells. J. Cell Biol. 109:253–263.

    Google Scholar 

  28. Lim, S.-S., Edson, K. J., Letourneau, P. C., and Borisy, G. G. 1990. A test of microtubule translocation during neurite elongation. J. Cell Biol. 111:123–130.

    Google Scholar 

  29. Okabe, S., and Hirokawa, N. 1990. Turnover of fluorescently labeled tubulin and actin in the axon. Nature 343:479–482.

    Google Scholar 

  30. Mitchison, T., and Kirschner, M. 1988. Cytoskeletal dynamics and nerve growth. Neuron 1:761–762.

    Google Scholar 

  31. Weisenberg, R. C., Flynn, J., Goa, B., Awodi, S., Skee, F., Goodman, S. R., and Riederer, B. M. 1987. Microtubule gelation-contraction: essential components and relation to slow axonal transport. Science 238:1119–1122.

    Google Scholar 

  32. Weisenberg, R. C., Flynn, J., Goa, B., and Awodi, S. 1988. Microtubule gelation-contraction in vitro and its relationship to component a of slow axonal transport. Cell Motil. Cytoskel. 10:331–340.

    Google Scholar 

  33. Lewis, S. E., and Nixon, R. A. 1988. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. J. Cell Biol. 107:2689–2701.

    Google Scholar 

  34. Gard, D. L., and Kirschner, M. W. 1985. A polymer-dependent increase in phosphorylation of beta-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J. Cell Biol. 100:764–774.

    Google Scholar 

  35. Raybin, D., and Flavin, M. 1977. Modification of tubulin by tyrosylation in cells and extracts and its affect on assembly in vitro. J. Cell Biol. 73:492–504.

    Google Scholar 

  36. Bass, P. W., and Black, M. M. 1990. Individual microtubules in the axon consist of domains that differ in both composition and stability. J. Cell Biol. 111:495–509.

    Google Scholar 

  37. Black, M. M., and Keyser, P. 1987. Acetylation of alpha-tubulin in cultured neurons and the induction of alpha-tubulin acetylation in PC-12 cells by treatment with nerve growth factor. J. Neurosci. 7:1833–1842.

    Google Scholar 

  38. Kuczmarski, E. R., and Rosenbaum, J. L. 1979. Studies of the organization and localization of actin and myosin in neurons. J. Cell Biol. 80:356–371.

    Google Scholar 

  39. Letourneau, P. C. 1983. Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J. Cell Biol. 97:963–973.

    Google Scholar 

  40. Bernstein, B. W., and Bamburg, J. R. 1989. Depolarization of synaptosomes induces rapid cycling of actin assembly. Neuron 3:257–265.

    Google Scholar 

  41. Pachter, J., Liem, R., and Shelanski, M. 1984. The neuronal cytoskeleton. Adv. Cell Neurobiol. 5:113–142.

    Google Scholar 

  42. Fath, K. R., and Lasek, R. J. 1988. Two classes of actin microfilaments are associated with the inner cytoskeleton of axons. J. Cell Biol. 107:613–621.

    Google Scholar 

  43. Clark, S. E., Moss, D. J., and Bray, D. 1983. Actin polymerization and synthesis in cultured neurones. Exp. Cell Res. 147:303–314.

    Google Scholar 

  44. Carlsson, L., Nyström, L. E., Sundkvist, I., Markey, F., and Lindberg, U. 1977. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115:465–483.

    Google Scholar 

  45. Nishida, E., Maekawa, S., and Sakai, H. 1984. Characterization of the action of porcine brain profilin on actin polymerization. J. Biochem. (Tokyo) 95:399–404.

    Google Scholar 

  46. Bamburg, J. R., Harris, H. E., and Weeds, A. G. 1980. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 121:178–182.

    Google Scholar 

  47. Bamburg, J. R., and Bray, D. 1987. Distribution and cellular localization of actin depolymerizing factor. J. Cell Biol. 105:2817–2825.

    Google Scholar 

  48. Nishida, E., Maekawa, S., and Sakai, H. 1984. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23:5307–5313.

    Google Scholar 

  49. Willard, M., Wiseman, M., Levine, J. and Skene, P. 1979. Axonal transport of actin in rabbit retinal ganglion cells. J. Cell Biol. 81:581–591.

    Google Scholar 

  50. Bray, J. J., Fernyhough, P., Bamburg, J. R., and Bray, D. Actin depolymerizing factor is a component of slow axonal transport. J. Neurochem. (submitted).

  51. Giuliano, K. A., Khatib, F. A., Hayden, S. M., Daoud, E. W. R., Adams, M. E., Amorese, D. A., Bernstein, B. W., and Bamburg, J. R. 1988. Properties of purified actin depolymerizing factor from chick brain. Biochemistry 27:8931–8938.

    Google Scholar 

  52. Lena, J. Y., Bamburg, J. R., Rabié, A., and Faivre-Sarrailh, C. 1991. Actin depolymerizing factor (ADF) in the cerebellum of the developing rat: a quantitative and immunocytochemical study. Neuroscience (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Lawrence Austin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bray, J.J., Mills, R.G. Transport complexes associated with slow axonal flow. Neurochem Res 16, 645–649 (1991). https://doi.org/10.1007/BF00965550

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965550

Key Words

Navigation