Skip to main content
Log in

Stability of neuronal and glial marker enzymes in post-mortem rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The enzymatic activities in post-mortem rat brain kept at 4°C and at 25°C were determined for a number of enzymes localized in specific cell types in the central nervous system. Choline acetyltransferase (CAT), glycerol-3-phosphate dehydrogenase (GPDH), glutamine synthetase (GS), lactate dehydrogenase (LDH) and 2′,3′-cyclic nucleotide phosphohydrolase (CNPase) were found to be very stable at both 4°C and 25°C with only slight, if any, losses of activity being seen even at periods as long as 72 hr. Glutamic acid decarboxylase (GAD) activity was less stable than that of the other enzymes. In brains kept at 4°C GAD activity was stable out to 24 hr after which it began to decline rapidly to 65% of control at 72 hr. In brains kept at 25°C, GAD activity was stable for 6–8 hr and then began to steadily decline to 58% of control at 24 hr and 29% of control at 72 hr. Assuming that these enzymes have similar stabilities in post-mortem human brain, the effect of post-mortem delay in processing tissues may be of lesser significance than other factors with regard to the measured enzyme activities in human brain samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehringer, H., andHornykiewicz, O. 1960. Verteilung von noradrenalin und dopamin (3-hydroxytryptamin) im gehirn des menshen und ihr verhalten bei erkrankungen des extrapyrimidalen systems. Klin. Wschr. 38:1236–1239.

    PubMed  Google Scholar 

  2. Perry, T. L., Hansen, S., andKloster, M. 1973. Huntington's disease: Deficiency of γ-aminobutyric acid in brain. New Engl. J. Med. 288:337–342.

    PubMed  Google Scholar 

  3. Bird, E. D., andIversen, L. L. 1974. Huntington's chorea: Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain 97:457–472.

    PubMed  Google Scholar 

  4. Grote, S. S., Moses, S. G., Robins, E., Hudgens, R. W., andCroninger, A. B. 1974). A study of selected catecholamine metabolizing enzymes: A comparison of depressive suicides and alcoholic suicides with controls. J. Neurochem. 23:791–802.

    PubMed  Google Scholar 

  5. Rinne, V. K., Laaksonen, H., Riekkinen, P., andSonninen, V. 1974. Brain glutamic acid decarboxylase activity in Parkinson's disease. Europ. Neurol. 12:13–19.

    PubMed  Google Scholar 

  6. Bowen, D. M., Smith, C. B., White, P. andDavison, A. N. 1976. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotropies. Brain 99:459–496.

    PubMed  Google Scholar 

  7. McGeer, P. L., andMcGeer, E. G. (1976). Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson's disease and Huntington's chorea. J. Neurochem. 26:65–76.

    PubMed  Google Scholar 

  8. Vogel, W. H., Heginbothom, S. D., andBoehme, D. H. 1975. Glutamic acid decarboxylase, glutamine synthetase and glutamic acid dehydrogenase in various areas of human brain. Brain Res. 88:131–135.

    PubMed  Google Scholar 

  9. Fahn, S., andCote, L. J. 1976. Stability of enzymes in post-mortem rat brain. J. Neurochem. 26:1039–1042.

    PubMed  Google Scholar 

  10. Puymirat, J., Javoy-Agid, F., Gaspar, P., Ploska, A., Prochiantz, A., andAgid, Y. 1979. Post mortem stability and storage in the cold of brain enzymes. J. Neurochem 32:449–454.

    PubMed  Google Scholar 

  11. Martinez-Hernandez, A., Bell, K. P., andNorenberg, M. D. 1977. Glutamine synthetase: Glial localization in brain. Science 195:1356–1358.

    PubMed  Google Scholar 

  12. Norenberg, M. D., andMartinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310.

    PubMed  Google Scholar 

  13. Leveille, P. J., McGinnis, J. F., Maxwell, D. S., andde Vellis, J. 1980. Immunocytochemical localization of glucerol-3-phosphate dehydrogenase in rat oligodendroglia. Brain Res. 196:287–305.

    PubMed  Google Scholar 

  14. Leveille, P. J., andde Vellis, J. 1982. Studies of glycerol phosphate dehydrogenase and glucocorticoid receptors in glial cultures. Trans. Amer. Soc. Neurochem. 13:233.

    Google Scholar 

  15. Poduslo, S. 1975. The isolation of plasma membrane and myelin fraction derived from oligodendria from calf brain. J. Neurochem. 24:647–654.

    PubMed  Google Scholar 

  16. Poduslo, S. E., andNorton, W. T. 1972. Isolation and some chemical properties of oligodendroglia from calf brain. J. Neurochem. 19:727–736.

    PubMed  Google Scholar 

  17. Carnegie, P. R., andSims, N. R. 1977. Proteins and enzymes of myelin. Pages 182–188,in Field, E. J. (ed.), Multiple Sclerosis. A critical conspectus, Univ. Park Press, Baltimore.

    Google Scholar 

  18. Prinkle, T., Zaruba, M. E., andMcKhann, G. 1978. Activity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in regions of rat brain during development: Quantiative relationship to myelin basic protein. J. Neurochem. 30:309–314.

    PubMed  Google Scholar 

  19. Hansen, C., andSpuhler, K. 1984. Development of the National Institutes of Health genetically heterogeneous rat stock. Alcoholism: Clin. Exp. Res. 8:477–479.

    Google Scholar 

  20. Chude, O., andWu, J.-Y. 1976. A rapid method for assaying enzymes whose substrates differ by change. Application to brain L-glutamate decarboxylase. J. Neurochem. 27:83–86.

    PubMed  Google Scholar 

  21. Pishak, M. R., andPhillips, A. T. 1979. A modified radioisotopic assay for measuring glutamine synthetase activity in tissue extracts. Anal. Biochem. 94:82–88.

    PubMed  Google Scholar 

  22. Kobayashi, Y., andde Vellis, J. 1985. False positiveness in a choline acetyltransferase assay caused by non-ionic reducing reagents. J. Neurosci. Res. 13:509–513.

    PubMed  Google Scholar 

  23. Breen, G. A., andde Vellis, J. 1974. Regulation of glycerol phosphate dehydrogenase by hydrocortisone in dissociated rat cerebral cell cultures. Develop. Biol. 41:255–266.

    PubMed  Google Scholar 

  24. Weissbarth, S., Maker, H. S., Lehrer, G. M., Schneider, S., andBornstein, M. B. 1980. A sensitive fluorometric assay for 2′,3′-cyclic nucleotide 3′-phosphohydrolase. J. Neurochem. 35:503–505.

    PubMed  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  26. Spokes, E. G. S., andKoch, D. J. 1978. Post-mortem stability of dopamine, glutamate decarboxylase and choline acetyltransferase in the mouse brain under conditions simulating the handling of human autopsy material. J. Neurochem. 31:381–383.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, T., Scully, S.A., de Vellis, J. et al. Stability of neuronal and glial marker enzymes in post-mortem rat brain. Neurochem Res 11, 383–392 (1986). https://doi.org/10.1007/BF00965012

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965012

Keywords

Navigation