Skip to main content
Log in

The glutathione system in the subcellular fractions of developing rat brain and liver

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

In the present study, we estimated the levels of various forms of glutathione and the state of the glutathione antioxidant system in the subcellular fractions of the rat brain and in the liver during early postnatal ontogeny. Several groups of animals were studied, including 10-, 20-, and 30-day-old male Wistar rats, which allowed us to study different periods of brain maturation. It was shown that during the postnatal development of the rat brain from day 10 to day 30 the contents of both reduced and oxidized forms of glutathione decreased. In early ontogeny, when the activity of most of antioxidant enzymes is low, reduced glutathione may perform an antioxidant function. On the other hand, despite the decrease in the absolute value, the portion of GSH in the total glutathione pool increased and modified the redox state of the cells toward a more reduced condition. The decrease in the GSH level may be related to lower activity of glutathione reductase, which reduces oxidized glutathione, or to increased activity of the antioxidant enzymes, such as glutathione peroxidase and glutathione-S-transferase, which use GSH as a cofactor in their reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burdon, R.H., Free Rad. Biol. Med., 1995, vol. 18, pp. 775–794.

    Article  CAS  PubMed  Google Scholar 

  2. Hitchler, M.J. and Domann, F.E., Free Rad. Biol. Med., 2007, vol. 43, pp. 1023–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Valko, M., Leibfritz, D., Moncol, J., Cronin, M., Mazur, M., and Telser, J., Int. J. Biochem. Cell Biol., 2007, vol. 39, pp. 44–84.

    Article  CAS  PubMed  Google Scholar 

  4. Schafer, F.Q. and Buettner, G.R., Free Rad. Biol. Med., 2001, vol. 30, no. 11, pp. 1191–1212.

    Article  CAS  PubMed  Google Scholar 

  5. Dickinson, D.A. and Forman, H.J., Biochem. Pharmacol., 2002, vol. 64, pp. 1019–1026.

    Article  CAS  PubMed  Google Scholar 

  6. Circu, M.L. and Àw, T.Y., Free Rad. Res., 2008, vol. 42, no. 8, pp. 689–706.

    Article  CAS  Google Scholar 

  7. Dringen, R., Progr. Neurobiology, 2000, vol. 62, pp. 649–671.

    Article  CAS  Google Scholar 

  8. Dringen, R. and Hirrlinger, J., Biol. Chem., 2003, vol. 384, pp. 505–516.

    Article  CAS  PubMed  Google Scholar 

  9. Dringen, R., Pawlowski, P.G., and Hirrlinger, J., J. Neurosci. Res., 2005, vol. 79, pp. 157–165.

    Article  CAS  PubMed  Google Scholar 

  10. Eshchenko, N.D., Putilina, F.E, and Galkina, O.V., Biokhimiya razvivayushchegosya mozga (izbrannye razdely) (Biochemistry of the Developing Brain (Selected Chapters)), St. Petersburg: Izd. SPbGU, 2013.

    Google Scholar 

  11. Gutterer, J.M., Dringen, R., Hirrlinger, J., and Hamprecht, B., J. Neurochem., 1999, vol. 73, no. 4, pp. 1422–1430.

    Article  CAS  PubMed  Google Scholar 

  12. Brannan, T.S., Maker, H.S., Raes, I., and Weiss, C., Brain Res., 1980, vol. 200, no. 2, pp. 474–477.

    Article  CAS  PubMed  Google Scholar 

  13. Nagy, K. and Zs.-Nagy, I.I, Arch. Gerontol. Geriatr., 1990, vol. 11, no. 3, pp. 285–291.

    Article  CAS  PubMed  Google Scholar 

  14. Bakhtyukov, A.A., Galkina, O.V., and Eshchenko, N.D., Neurochem. J., 2016, vol. 10, no. 3, pp. 199–204.

    Article  CAS  Google Scholar 

  15. Savaskan, N.E., Borchert, A., Brauer, A.U., and Kuhn, H., Free Rad. Biol. Med., 2007, vol. 43, pp. 191–201.

    Article  CAS  PubMed  Google Scholar 

  16. Oakley, A.J., Curr. Opin. Struct. Biol., 2005, vol. 15, pp. 716–723.

    Article  CAS  PubMed  Google Scholar 

  17. Gallagher, E.P., Gardner, J.L., and Barber, D.S., Biochem. Pharmacol., 2006, vol. 71, pp. 1619–1628.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson, J.A., El Barbary, A., Kornguth, S.E., Brugge, J.F., and Siegel, F.L.J., Neuroscience, 1993, vol. 13, no. 5, pp. 2013–2023.

    CAS  PubMed  Google Scholar 

  19. Sagara, J. and Sugita, Y., Brain Res., 2001, vol. 902, pp. 190–197.

    Article  CAS  PubMed  Google Scholar 

  20. Tamura, Y., Kataoka, Y., Cui, Y., Takamori, Y., Watanabe, Y., and Yamada, H., Neuroscience, 2007, vol. 148, pp. 535–540.

    Article  CAS  PubMed  Google Scholar 

  21. Backos, D.S., Franklin, C.C., and Reigan, P., Biochem. Pharmacol., 2012, vol. 83, pp. 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  22. Galkina, O.V., Neurochem. J., 2013, vol. 7, no. 2, pp. 89–97.

    Article  CAS  Google Scholar 

  23. Hayes, J.D., Milner, S.W., and Walker, S.W., Biochim. Biophys. Acta, 1989, vol. 994, no. 1, pp. 21–29.

    Article  CAS  PubMed  Google Scholar 

  24. Hansen, J.M. and Harris, C., Biochim. Biophys. Acta, 2015, vol. 1850, no. 8, pp. 1527–1542.

    Article  CAS  PubMed  Google Scholar 

  25. Lipton, S.A., Choi, Y.B., Takahashi, H., Zhang, D., Li, W., Godzik, A., and Bankston, L.A., Trends Neurosci., 2002, vol. 25, pp. 474–480.

    Article  CAS  PubMed  Google Scholar 

  26. Trachootham, D., Lu, W., Ogasawara, M.A., Rivera-Del, ValleN., and Huang, P., Antioxid. Red. Signal., 2010, vol. 10, no. 8, pp. 1343–1374.

    Article  Google Scholar 

  27. Shi, Z.Z., Osei-Frimpong, J., Kala, G., Kala, S.V., Barrios, R.J., Habib, G.M., Lukin, D.J., Danney, C.M., Matzuk, M.M., and Lieberman, M.W., Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 5101–5106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dickinson, D.A., Moellering, D.R., Iles, K.E., Patel, R.P., Levonen, A.-L., Wigley, A., Darley-Usmar, V.M., and Forman, H.J., Biol. Chem., 2003, vol. 384, pp. 527–537.

    Article  CAS  PubMed  Google Scholar 

  29. Hajos, F., Brain Res., 1975, vol. 93, pp. 485–489.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, D. and Lardy, H., Methods Enzymol., 1967, vol. 10, pp. 94–96.

    Article  CAS  Google Scholar 

  31. Akerboom, T. and Sies, H., Methods Enzymol., 1981, vol. 77, pp. 373–382.

    Article  CAS  PubMed  Google Scholar 

  32. Bergmeyer, J., Methods of Ensymatic Analis, Bergmeyer, J., Ed., New York, London: Academ. Press, 1965, pp. 875–879.

    Google Scholar 

  33. Habig, W.H. and Jakoby, W.B., Methods Enzymol., 1981, vol. 77, pp. 398–405.

    Article  CAS  PubMed  Google Scholar 

  34. Galkina, O., Int. J. Neurology Res., 2015, vol. 1, no. 1, pp. 123–128.

    Article  Google Scholar 

  35. Nanda, D., Tolputt, J., and Collard, K.J., Dev. Brain Res., 1996, vol. 94, pp. 238–241.

    Article  CAS  Google Scholar 

  36. Putilina, F.E., in Nervnaya Sistema (The Nervous System), Leningrad: LGU, 1978, no. 19, pp. 130–145.

    Google Scholar 

  37. Galkina, O.V., Putilina, F.E., and Eshchenko, N.D., Neurochem. J., 2014, vol. 8, no. 2, pp. 83–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Galkina.

Additional information

Original Russian Text © O.V. Galkina, A.A. Bakhtyukov, M.O. Akhmetshin, V.M. Prokopenko, N.D. Eshchenko, 2017, published in Neirokhimiya, 2017, Vol. 34, No. 4, pp. 263–269.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkina, O.V., Bakhtyukov, A.A., Akhmetshin, M.O. et al. The glutathione system in the subcellular fractions of developing rat brain and liver. Neurochem. J. 11, 266–271 (2017). https://doi.org/10.1134/S1819712417030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712417030047

Keywords

Navigation