Skip to main content
Log in

Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy:

1. The pyruvate dehydrogenase complex

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic thiamine deprivation in the rat leads to selective neuropathological damage in brainstem structures whereas treatment with the central thiamine antagonist, pyrithiamine, results in more widespread damage. In order to further elucidate the neurochemical mechanisms responsible for this selective damage, the thiamine-dependent enzyme complex pyruvate dehydrogenase (PDHC) was measured in 10 brain structures in the rat during progression of thiamine deficiency produced by chronic deprivation or by pyrithiamine treatment. Feeding of a thiamine-deficient diet to adult rats resulted in 5–7 weeks in ataxia and loss of righting reflex accompanied by decreased blood transketolase activities. PDHC activities were selectively decreased by 15–30% in midbrain and pons (lateral vestibular nucleus). Thiamine treatment of symptomatic rats led to reversal of neurological signs and to concomitant reductions of the cerebral PDHC abnormalities. Daily pyrithiamine treatment led within 3 weeks to loss of righting reflex and convulsions and to decreased blood transketolase of a comparable magnitude to that observed in chronic thiamine-deprived rats. No significant regional alterations of PDHC, however, were observed in pyrithiamine-treated rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peters, R. A. 1936. The biochemical lesion in vitamin B1 deficiency. Application of modern biochemical analysis in its diagnosis. Lancet 1:1161–1164.

    Google Scholar 

  2. Gaitonde, M. K., Fayein, N. A., andJohnson, A. L. 1975. Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine. J. Neurochem. 24:1215–1223.

    PubMed  Google Scholar 

  3. Butterworth, R. F. 1982. Neurotransmitter function in thiamine-deficiency encephalopathy. Neurochem. Int. 4:449–464.

    Google Scholar 

  4. Vorhees, C. V., Schmidt, D. E., andBarrett, R. J. 1978. Effects of pyrithiamin and oxythiamin on acetylcholine levels and utilization in rat brain. Brain Res. Bull. 3:493–496.

    PubMed  Google Scholar 

  5. Butterworth, R. F., Hamel, E., Landreville, F., andBarbeau, A. 1979. Amino acid changes in thiamine-deficiency encephalopathy: some implications for the pathogenesis of Friedreich's Ataxia. Can. J. Neurol. Sci. 6:217–222.

    PubMed  Google Scholar 

  6. Jolicoeur, F. B., Rondeau, D. B., Hamel, E., Butterworth, R. F., ANDBarbeau, A. 1979. Measurement of ataxia and related neurological signs in the laboratory rat. Can. J. Neurol. Sci. 6:209–216.

    PubMed  Google Scholar 

  7. Glowinski, J., andIversen, L. L. 1966. Regional studies of catecholamines in the rat brain. J. Neurochem. 13:655–669.

    PubMed  Google Scholar 

  8. Paxinos, G., andWatson, C. 1982. The rat brain in stereotaxic coordinates. Academic Press, New York.

    Google Scholar 

  9. Massod, M. F., McGuire, S. L., andWerner, K. R. 1971. Analysis of blood transketolase activity. Amer. J. Clin. Path. 55:465–470.

    Google Scholar 

  10. Ksiezak-Reding, H., Blass, J. P., andGibson, G. E. 1982. Studies on the pyruvate dehydrogenase complex in brain with the arylamine acetyltransferase-coupled assay. J. Neurochem. 38:1627–1636.

    PubMed  Google Scholar 

  11. Butterworth, R. F., andGiguère, J. F. 1984. Pyruvate dehydrogenase activity in regions of the rat brain during postnatal development. J. Neurochem. 43:280–282.

    PubMed  Google Scholar 

  12. Sheu, K. F. R., Lai, J. C. K., andBlass, J. P. 1983. Pyruvate dehydrogenase phosphate (PDHb) phosphatase in brain: activity, properties and subcellular localization. J. Neurochem. 40:1366–1372.

    PubMed  Google Scholar 

  13. Jope, R., andBlass, J. P. 1976. The regulation of pyruvate dehydrogenase in brain in vivo. J. Neurochem. 26:709–714.

    PubMed  Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  15. Dreyfus, P. M. 1962. Clinical application of blood transketolase determinations. New Engl. J. Med. 267:596–598.

    Google Scholar 

  16. Warnock, L. G., Prudhomme, C. R., andWagner, C. 1978. The determination of thiamin pyrophosphate in blood and other tissues, and its correlation with erythrocyte transketolase activity. J. Nutr. 108:421–427.

    PubMed  Google Scholar 

  17. Waldenlind, L., Borg, S., andVikander, B. 1981. Effect of peroral thiamine treatment on thiamine contents and transketolase activity of red blood cells in alcoholic patients. Acta Med. Scand. 209:209–212.

    PubMed  Google Scholar 

  18. McCandless, D. W., andSchenker, S. 1968. Encephalopathy of thiamine deficiency: studies of intracerebral mechanisms. J. Clin. Invest. 47:2268–2280.

    PubMed  Google Scholar 

  19. Collins, G. H. 1967. Glial cell changes in the brain stem of thiamine-deficient rats. Am. J. Pathol. 50:791–803.

    PubMed  Google Scholar 

  20. Robertson, D. M., Wasan, S. M., andSkinner, D. B. 1968. Ultrastructural features of early brain stem lesions of thiamine-deficient rats. Am. J. Pathol. 52:1081–1087.

    PubMed  Google Scholar 

  21. Tellez, I., andTerry, R. D. 1968. Fine structure of the early changes in the vestibular nuclei of the thiamine-deficient rat. Am. J. Pathol. 52:777–794.

    PubMed  Google Scholar 

  22. Pincus, J. H., andGrove, I. 1970. Distribution of thiamine phosphate esters in normal and thiamine-deficient brain. Exp. Neurol. 28:477–483.

    PubMed  Google Scholar 

  23. Murdock, D. S., andGubler, C. J. 1973. Effects of thiamine deficiency and treatment with the antagonists, oxythiamine and pyrithiamine, on the levels and distribution of thiamine derivatives in rat brain. J. Nutr. Sci. Vitaminol. 19:237–249.

    PubMed  Google Scholar 

  24. Dreyfus, P. M., andHauser, G. 1965. The effect of thiamine deficiency on the pyruvate decarboxylase system of the central nervous system. Biochim. Biophys. Acta 104:78–84.

    PubMed  Google Scholar 

  25. Pincus, J. H., andWells, K. 1972. Regional distribution of thiamine-dependent enzymes in normal and thiamine-deficient brain. Exp. Neurol. 37:495–501.

    PubMed  Google Scholar 

  26. Heinrich, C. P., Stadler, H., andWeiser, H. 1973. The effect of thiamine deficiency on the acetylcoenzyme A and acetylcholine levels in the rat brain. J. Neurochem. 21:1273–1281.

    PubMed  Google Scholar 

  27. Gubler, C. J. 1968. Enzyme studies in thiamine deficiency. Int. J. Vitamin Res. 38:287–303.

    Google Scholar 

  28. Jones, J. H., andDe Angeli, E. 1960. Thiamine deficiency and the in vivo oxidation of lactate and pyruvate labeled with14C. J. Nutr. 70:537–546.

    PubMed  Google Scholar 

  29. Gubler, C. J. 1961. Studies on the physiological functions of thiamine. J. Biol. Chem. 236:3112–3120.

    PubMed  Google Scholar 

  30. Koeppe, R. E., O'Neal, R. M., andHahn, C. H. 1954. Pyruvate decarboxylation in thiamine deficient brain. J. Neurochem. 11:695–699.

    Google Scholar 

  31. Inoue, A., Shim, S., andIwata, H. 1970. The activation of thiamine diphosphatase by ATP in rat brain. J. Neurochem. 17:1373–1382.

    PubMed  Google Scholar 

  32. McCandless, D. S., andSchwartzenburg, F. C. Jr. 1981. The effect of thiamine deficiency on energy metabolism in cells of the lateral vestibular nucleus. Res. Comm. Psych. Psychiat. Behav. 6:183–190.

    Google Scholar 

  33. Vorhees, C. V., Schmidt, D. E., Barrett, R. J., andSchenker, S. 1977. Effects of thiamin deficiency on acetylcholine levels and utilization in vivo in rat brain. J. Nutr. 107:1902–1908.

    PubMed  Google Scholar 

  34. Troncoso, J. C., Johnston, M. V., Hess, K. M., Griffin, J. W., andPrice, D. L. 1981. Model of Wernicke's Encephalopathy. Arch. Neurol. 38:350–354.

    PubMed  Google Scholar 

  35. Aikawa, H., Watanabe, I. S., Furuse, T., Iwasaki, Y., Satoyoshi, E., Sumi, T., andMoroji, T. 1984. Low energy levels in thiamine-deficient encephalopathy. J. Neuropathol. Exp. Neurol. 43:276–287.

    Google Scholar 

  36. Rindi, G., andPerri, V. 1961. Uptake of pyrithiamine by tissue of rats. Biochem. J. 80:214–216.

    PubMed  Google Scholar 

  37. Nose, Y., Iwashima, A., andNishino, H. 1974. Thiamine uptake by rat brain slices. Pages 157–168,in Gubler, C. J., Fujiwara, M., andDreyfus, P. M. (eds.), Thiamine, John Wiley, New York.

    Google Scholar 

  38. Cooper, J. R. 1968. The role of thiamine in nervous tissue: the mechanism of action of pyrithiamine. Biochim. Biophys. Acta 156:368–373.

    PubMed  Google Scholar 

  39. Cooper, J. R., andPincus, J. H. 1979. The role of thiamine in nervous tissue. Neurochem. Res. 4:223–239.

    Google Scholar 

  40. Gibson, G. E., Ksiezak-Reding, H., Sheu, K. F. R., Mykytyn, V., andBlass, J. P. 1984. Correlation of enzymatic, metabolic and behavioral defects in thiamin deficiency and its reversal. Neurochem. Res. 9:803–814.

    Google Scholar 

  41. Bennett, C. D., Jones, J. H., andNelson, J. 1986. The effects of thiamine deficiency on the metabolism of the brain. J. Neurochem. 13:449–459.

    Google Scholar 

  42. Butterworth, R. F., Giguère, J. F., andBesnard, A. M. 1985. Region-selective changes of α-ketoacid dehydrogenases in experimental thiamine-deficiency encephalopathy. (Abstr) J. Neurochem.44(Suppl), S170B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butterworth, R.F., Giguere, JF. & Besnard, AM. Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy:. Neurochem Res 10, 1417–1428 (1985). https://doi.org/10.1007/BF00964982

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964982

Keywords

Navigation