Skip to main content
Log in

Brain 5-hydroxytryptamine level, metabolism, and binding in E1 mice

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Inbred E1 mice are highly susceptible to convulsive seizures upon “throwing” stimulation. The strain is known to have an abnormal 5-hydroxytryptamine (5-HT) metabolism. In the study here 5-HT level, [14C]5-hydroxytryptophan (5-HTP) metabolism, MAO activity and [3H]5-HT receptor binding were examined in the cortex, brainstem and cerebellum. In the interictal period cortical and brainstem 5-HT level and [3H]5-HT receptor binding were significantly lower. In the same period cortical biosynthesized [14C]5-HT from [14C]5-HTP taken up was higher, and MAO activity was not changed.L-DOPA with MK486 induced a low threshold of seizures and decreased cortical 5-HT level. Abnormally functioning 5-HT neurones may exist in the E1 mouse cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, G. J., andKopeloff, L. M. 1970. Metrazol seizures in rats: effect ofp-chlorophenyl-alanine. Brain Res. 22:231–235.

    Google Scholar 

  2. Alexander, G. J., Kopeloff, L. M., andAlexander, P. B. 1971. Anticonvulsive effect ofp-chlorophenylalanine in audiosensitive mice. Life Sci. 10:877–882.

    Google Scholar 

  3. Ashton, D., Leysen, J. E., andWauquier, A. 1980. Neurotransmitters and receptor binding in amygdaloid kindled rats: serotonergic and noradrenergic modulatory effects. Life Sci. 27:1547–1556.

    Google Scholar 

  4. Atterwill, C. K. 1980. Lack of effect of repeated electroconvulsive shock on [3H]spiroperidol and [3H]5-hydroxytrypamine binding and cholinergic parameters in rat brain. J. Neurochem. 35:729–734.

    Google Scholar 

  5. Azzaro, A. J., Wenger, G. R., Craig, C. R., andStitzel, R. E. 1972. Reserpine-induced alterations in brain amines and their relationship to changes in the incidence of minimal electroshock seizures in mice. J. Pharmacol. Exp. Ther. 180:558–568.

    Google Scholar 

  6. Brown, D. R., andGrowdon, J. H. 1980.L-tryptophan administration potentiates serotonin-dependent myoclonic behavior in the rat. Neuropharmacology 19:343–347.

    Google Scholar 

  7. Browning, R. A., Hoffmann, W. E., andSimonton, L. 1978. Changes in seizure susceptibility after intracerebral treatment with 5,7-dihydroxytryptamine: role of serotonergic neurones. Ann. N.Y. Acad. Sci. 305:437–456.

    Google Scholar 

  8. Creese, I., andSnyder, S. H. 1978.3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus. Eur. J. Pharmacol. 49:201–230.

    Google Scholar 

  9. Dailey, J. W., Battarbee, H. D., andJobe, P. C. 1982. Enzyme activities in the central nervous system of the epilepsy-prone rat. Brain Res. 231:225–230.

    Google Scholar 

  10. De La Torre, J. C., Kawanaga, H. M., andMullan, S. 1970. Seizure susceptibility after manipulation of brain serotonin. Arch. Int. Pharmacodyn. 188:298–304.

    Google Scholar 

  11. De La Torre, J. C., andMullan, S. 1970. A possible role for 5-hydroxytryptamine in drug-induced seizures. J. Pharm. Pharmacol. 22:858–859.

    Google Scholar 

  12. De Oliveira, L. F., andBretas, A. D. 1974. Effects of 5-hydroxytryptophan, iproniazid and p-chlorophenylalanine on lidocaine seizure threshold of mice. Eur. J. Pharmacol. 29:5–9.

    Google Scholar 

  13. Deakin, J. F. W., Owen, F., Cross, A. J. andDashwood, M. J. 1981. Studies on possible mechanisms of action of electroconvulsive therapy: effects of repeated electrically induced seizures on rat brain receptors for monoamines and other neurotransmitters. Psychopharmacology 73:345–349.

    Google Scholar 

  14. Doyle, R., andSellinger, O. Z. 1980. Differences in activity in cerebral methyltransferases and monoamine oxidases between audiogenic seizure susceptible and resistant mice and deermice. Pharmacol. Biochem. Behav. 3:589–591.

    Google Scholar 

  15. Garalis, E. andSourkes, T. L. 1974. Use of cerebrospinal fluid drawn at pneumoencephalography in the study of monoamine metabolism in man. J. Neurol. Neurosurg. Psychiatry 37:704–710.

    Google Scholar 

  16. Hiramatsu, M. 1981. Brain monoamine levels and E1 mouse convulsions. Folia Psychiat. Neurol. Jpn. 35:261–266.

    Google Scholar 

  17. Imaizumi, K., Ito, S., Kuzukake, G., Takizawa, T., Fujiwara, K., andTutikawa, K. 1959. The epilepsy-like abnormalities in a strain of mouse. Jikken-Dobutsu (Exp. Anim.) 8:6–10 (in Japanese).

    Google Scholar 

  18. Jobe, P. C., Picchioni, A., andChin, L. 1973. Role of brain 5-hydroxytryptamine in audiogenic seizures in the rat. Life Sci. 13:1–13.

    Google Scholar 

  19. Kellar, K. J., Cascio, C. S., Butler, J. A., andKurtzke, R. N. 1981. Differential effects of electroconvulsive shock and antidepressant drugs on serotonin-2 receptors in rat brain. Eur. J. Pharmacol. 69:515–518.

    Google Scholar 

  20. Kilian, M., andFrey, H. 1973. Central monoamines and convulsive thresholds in mice and rats. Neuropharmacology 12:681–692.

    Google Scholar 

  21. Laxer, K. D., Sourkes, T. L., Fang, T. Y., Young, S. N., Gauthier, S. G., andMissala, K. 1979. Monoamine metabolites in the CSF of epileptic patients. Neurology 29:1157–1161.

    Google Scholar 

  22. Lazarova, M., Pezewlocka, B., Mogilnicka, E., andStala, L. 1979. The effect of L-DOPA and 5-hydroxytryptophan on the pentetrazol seizures in rats after lesions of the median raphe nucleus and substantia nigra. Pol. J. Pharmacol. Pharm. 31:547–554.

    Google Scholar 

  23. Lazarova, M., andRoussinov, K. 1979. On some relationships between dopaminergic and serotonergic mechanisms in pentylenetetrazol convulsions in albino mice. Acta. Physiol. Pharmacol. Bulg. 5:67–74.

    Google Scholar 

  24. Leino, E., MacDonald, E., Airaksinen, M., andPiekkinen, P. J. 1980. Homovanillic acid and 5-hydroxyindoleacetic acid levels in cerebrospinal fluid of patients with progressive myoclonus epilepsy. Acta. Neurol. Scand. 62:41–54.

    Google Scholar 

  25. Leysen, J. E., Niemegeers, C. J. E., Tollenaere, J. P., andLaduron, P. M. 1978. Serotonergic component of neuroleptic receptors. Nature 272:168–171.

    Google Scholar 

  26. Lints, C. E., Willott, J. E., Sze, P. Y., andNenja, L. H. 1980. Inverse relationship between whole brain monoamine levels and audiogenic seizure susceptibility in mice. Pharmacol. Biochem. Behav. 12:385–388.

    Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  28. Luscombe, G., Genner, P., andMarsden, C. D. 1982. Myoclonus in guinea pigs is induced by indole-containing but not piperazine-containing 5-HT agonists. Life Sci. 30:1487–1494.

    Google Scholar 

  29. Matz, D. R., Rolf, L. H., andBrune, G. G. 1978. Serotonin metabolism with idiopathic grand mal seizures. J. Neurol. 219:283–287.

    Google Scholar 

  30. Matz, D. R., Rolf, L. H., andBrune, G. G. 1980. 5-Hydroxytryptamine and idiopathic grandmal seizures. Pages 363–366,in Canger, R., Angeleri, F. andPenry, J. K. (eds.), Advances in Epileptology, XIth Epilepsy International Symposium, Raven Press, New York.

    Google Scholar 

  31. Miyakoshi, N., Tanaka, M., andShindo, H. 1980. Autoradiographic studies on distribution ofL-3,4-dihydroxyphenylalanine(L-DOPA)14C andL-5-hydroxytryptophan(L-5-HTP)-14C in the cat brain. Jpn. J. Pharmacol. 30:795–805.

    Google Scholar 

  32. Munkenbeck, K. E., andSchwark, W. S. 1982. Serotonergic mechanisms in amygdaloidkindled seizures in the rat. Exp. Neurol. 76:246–253.

    Google Scholar 

  33. Nasello, A. G., andMarichich, E. S. 1973. Effects of some cholinergic, adrenergic and serotonergic compounds, glutamic acid and GABA on hippocampal seizures. Pharmacology 9:233–239.

    Google Scholar 

  34. Nellhaus, G. 1968. Relationship of brain serotonin to convulsions. Neurology 18:298–299.

    Google Scholar 

  35. Screiber, R. A., andSchlesinger, K. 1971. Circadian rhythms and seizure susceptibility: relation to 5-hydroxytryptamine and norepinephrine in brain. Physiol. Behav. 6:635–640.

    Google Scholar 

  36. Schreiber, R. A. andSchlesinger, K. 1972. Circadian rhythms and seizure susceptibility: Effects of manipulations of light cycles on susceptibility to audiogenic seizures and on levels of 5-hydroxytryptamine and norepinephrine in brain. Physiol. Behav. 8:699–703.

    Google Scholar 

  37. Shaywitz, B. A., Cohen, D. J., andBowers, M. B. 1975. Reduced cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in children with epilepsy. Neurology 25:72–79.

    Google Scholar 

  38. Sparks, D. L., andBuckholtz, N. S. 1980. Effects of 6-methoxy-1,2,3,4-tetrahydro-β-carboline(6-MeO-THβC) on audiogenic seizures in DBA/2J mice. Pharmacol. Biochem. Behav. 12:119–124.

    Google Scholar 

  39. Stern, W. C., Ferbes, W. B., Resnick, O., andMorgane, P. J. 1974. Seizure susceptibility and brain amine levels following protein malnutrition during development in the rat. Brain Res. 79:375–384.

    Google Scholar 

  40. Strolin-Benedetti, M., andKeane, P. E. 1980. Differential changes in monoamine oxidase A and B activity in the aging rat brain. J. Neurochem. 35:1026–1032.

    Google Scholar 

  41. Sugiu, R. 1963. Pathophysiological study of the ep-mouse. Okayama-Igakkai-Zasshi 75:145–188 (in Japanese).

    Google Scholar 

  42. Suzuki, J. 1976. Paroxysmal discharges in the electroencephalogram of the E1 mouse. Experientia 32:336–338.

    Google Scholar 

  43. Suzuki, J., andNakamoto, Y. 1977. Seizure patterns and electroencephalograms of E1 mouse. Electroencephalogr. Clin. Neurophysiol. 43:299–311.

    Google Scholar 

  44. Truscott, T. C., 1975. Effects of phenylalanine and 5-hydroxytryptophan on seizure severity in mice. Pharmacol. Biochem. Behav. 3:939–941.

    Google Scholar 

  45. Uzbekov, M. G., Murphy, S., andRose, S. P. R. 1979. Ontogenesis of serotonin ‘receptors’ in different regions of rat brain. Brain Res. 168:195–199.

    Google Scholar 

  46. Wada, J. A. 1961. Epileptogenic cerebral electrical activity and serotonin levels. Science 134:1688–1690.

    Google Scholar 

  47. Wada, J. A., Balzamo, E., Meldrum, B. S., andNaquet, R. 1972. Behavioural and electrographic effects ofL-5-hydroxytryptophan andD,l-parachlorophenylalanine on epileptic senegalese baboon (papio papio). Electroencephalogr. Clin. Neurophysiol. 33:520–526.

    Google Scholar 

  48. Wenger, G. R., Stitzel, R. E., andCraig, C. R. 1973. The role of biogenic amines in the reserpine-induced alteration of minimal electroshock seizure thresholds in the mouse. Neuropharmacology 12:693–703.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiramatsu, M. Brain 5-hydroxytryptamine level, metabolism, and binding in E1 mice. Neurochem Res 8, 1163–1175 (1983). https://doi.org/10.1007/BF00964930

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964930

Keywords

Navigation