Skip to main content
Log in

Phenobarbital modulates the (Na+, K+)-stimulated ATPase and Ca2+-stimulated ATPase activities by increasing the bilayer fluidity of dog brain synaptosomal plasma membranes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The binding of [14C]phenobarbital into synaptosomal plasma membranes of dog brain follows a sigmoid path. The “best fit” curve of this binding is the one described by the Hill equation (r 2>0.93 and Hill coefficient,n=1.32). (Na+, K+)-stimulated ATPase and Ca2+-stimulated ATPase activities are modulated by phenobarbital. Arrhenius plots of (Na+, K+, Mg2+)-dependent ATPase revealed that phenobarbital (2mM) lowered the transition temperature and altered the Arrhenius activation energies of this enzyme. The allosteric inhibition by F of the (Na+, K+)-stimulated ATPase was studied in control and phenobarbital-treated membranes. The lowering of the transition temperature and changes in Arrhenius activation energy about the transition temperature in combination with changes observed in the allosteric properties of the (Na+, K+)-stimulated ATPase by F, produced by phenobarbital, would be expected if it is assumed that phenobarbital “fluidizes” synaptosomal plasma membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos, S. G. A., Deliconstantinos, G., Papaphilis, A., andTheodosiadis, G., 1981. Cooperative nature of the binding of cholesterol onto synaptosomal plasmal membranes of dog brain. Biochim. Biophys. Acta 643:642–649.

    Google Scholar 

  2. Alivisatos, S. G. A., Deliconstantinos, G., andTheodosiadis, G., 1981. Specificity of binding of cholesterol, steroid hormones and other compounds in synaptosomal plasma membranes and their effect on ouabain sensitive ATPase. Biochim. Biophys. Acta 643:650–658.

    Google Scholar 

  3. Deliconstantinos, G., andRamantanis, G., 1982. Evoked effects of oestradiol on hepatic cholesterol 7α-hydroxylase and drug oxidase in castrated rats. Int. J. Biochem. 14:811–815.

    Google Scholar 

  4. Deliconstantinos, G., Anastasopoulou, K., andKarayanakos, P., 1983. Modulation of hepatic microsomal Ca++-stimulated ATPase and drug oxidase activities of guinea pigs by dietary cholesterol. Biochem. Pharmacol. 32:1309–1312.

    Google Scholar 

  5. Deliconstantinos, G., andRamantanis, G., 1983. Alterations in the activities of hepatic plasma membrane and microsomal enzymes during liver regeneration. Biochem. J. 212:445–452.

    Google Scholar 

  6. Papahadjopoulos, D. K., Jacobson, G., Poste, G., andShepherd, G., 1975. Effect of local anesthetic on membrane properties. I. Changes in the fluidity of phospholipid bilayers. Biochim. Biophys. Acta 394:504–519.

    Google Scholar 

  7. Dipple, I., Gordon, L. M., andHouslay, M. D., 1982. The activity of 5′-Nucleotidase in liver plasma membranes is affected by the increase in bilayer fluidity achieved by anionic but not cationic drugs. J. Biol. Chem. 257:1811–1815.

    Google Scholar 

  8. Harvey, S. C., 1980, Hypnotics and sedatives: The barbiturates. Pages 349–365,in Goodman, L. S. andGilman, A. (eds.), The Pharmacological Basis of Therapeutics, 6th Ed. Macmillan, New York.

    Google Scholar 

  9. Papaphilis, A., andDeliconstantinos, G., 1980. Modulation of serotonergic receptors by exogenous cholesterol in the dog brain synaptosomal plasma membrane. Biochem. Pharmacol. 29:3325–3327.

    Google Scholar 

  10. Miller, G. I., 1959. Protein determination for large numbers of samples. Anal. Chem. 31:964–968.

    Google Scholar 

  11. Fiske, C. H., andSubbarow, Y., 1925. Colorimetric determination of inorganic phosphorus. J. Biol. Chem. 66:375–400.

    Google Scholar 

  12. Akera, T., andCheng, V. K., 1977, A simple method for the determination of affinity and binding site concentration in receptor binding studies. Biochim. Biophys. Acta 470:412–423.

    Google Scholar 

  13. Lenaz, G., Curatola, G., andMasotti, L., 1975, Perturbation of membrane fluidity. J. Bioenerg. 7:223–229.

    Google Scholar 

  14. Farias, R. N., 1980. Membrane cooperative enzymes as a tool for the investigation of membrane structure and related phenomena. Adv. Lipid. Res. 17:241–283.

    Google Scholar 

  15. Shinitzky, M., andBarenholz, Y., 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515:367–394.

    Google Scholar 

  16. Pastuszko, A., 1980. Action of barbiturates on activity of acetylcholinesterase from synaptosomal membranes. Neurochem. Res. 5:769–776.

    Google Scholar 

  17. Gordon, L. M., Saurheber, R. D., Esgate, J. A., Dipple, I., Marchmont, R. J., andHouslay, M. D., 1980. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J. Biol. Chem. 255:4519–4527.

    Google Scholar 

  18. Franks, N. P., andLieb, W. R., 1982. Molecular mechanisms of general anaesthesia. Nature 300:487–493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deliconstantinos, G. Phenobarbital modulates the (Na+, K+)-stimulated ATPase and Ca2+-stimulated ATPase activities by increasing the bilayer fluidity of dog brain synaptosomal plasma membranes. Neurochem Res 8, 1143–1152 (1983). https://doi.org/10.1007/BF00964928

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964928

Keywords

Navigation