Skip to main content
Log in

Age-related quantitative changes in enzyme activities of rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The patterns of brain enzymes linked to energy metabolism have been determined in rats aged between 3 and 21 months and compared to those of the developing brain as an estimate of the senescent energy capacity of this organ. During aging, pyruvate kinase increases, pointing towards an enhancement of the glucose-dependence of this organ. However, NAD-isocitrate dehydrogenase declines, suggesting a reduction of Krebs cycle activity in the aged rat brain. An increase in cytoplasmic NAD-malate dehydrogenase found during aging could provide an alternative mechanism of NAD recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schjeide, O. J. 1975. Relation of development and aging; pre-and postnatal differentiation of the brain as related to aging. Pages 37–38,in Ordy, J. M., andBrizzee, K. R. (eds.), Neurobiology of Aging, Advances in Behavioral Biology, Vol. 16, Plenum Press, New York.

    Google Scholar 

  2. Weinbach, E. C., andGarbus, J. 1959. Oxidative phosphorylation in mitochondria from aged rats. J. Biol. Chem. 234:412–417.

    Google Scholar 

  3. Ordy, J. M., andKaack, B. 1975. Neurochemical changes in composition, metabolism and neurotransmitters in the human brain with age. Pages 253–285,in Ordy, J. M., andBrizzee, K. R., (eds.), Neurobiology of Aging, Advances in Behavioral Biology, Vol. 16, Plenum Press, New York.

    Google Scholar 

  4. Hill, B. T. 1976. Influence of age on chromatin transcription in murine tissues using an heterologous and an homologous RNA polymerase. Gerontology 22:111–123.

    Google Scholar 

  5. Clark, J. M., andNicklas, J. 1970. The metabolism of rat brain mitochondria. Preparation and characterization. J. Biol. Chem. 245:4724–4731.

    Google Scholar 

  6. Plaut, G. W. E., andAogaichi, T. 1968. Purification and properties of diphosphopyridine nucleotide linked isocitrate dehydrogenase of mammalian liver. J. Biol. Chem. 243:5572–5583.

    Google Scholar 

  7. Ochoa, S., Mehler, A. H., andKornberg, A. 1948. Biosynthesis of dicarboxylic acids by carbon dioxide fixation. J. Biol. Chem. 174:979–1000.

    Google Scholar 

  8. Ballard, F. J., andHanson, R. W. 1967. Changes in lipid synthesis in rat liver during development. Biochem. J. 102:952–958.

    Google Scholar 

  9. Srere, P. 1969. Methods Enzymol. 13:3–11.

    Google Scholar 

  10. Feliú, J. E., andSols, A. 1976. Interconversion phenomena between two kinetic forms of class a pyruvate kinase from Ehrlich ascites tumor cells. Mol. Cell. Biochem. 13:31–44.

    Google Scholar 

  11. Clark, B., andPorteous, J. W. 1964. Determination of succinic acid by an enzymic method. Biochem. J. 93:21c.

    Google Scholar 

  12. Lai, J. C. K., andClark, J. B. 1976. Preparation and properties of mitochondria derived from synaptosomes. Biochem. J. 154:423–432.

    Google Scholar 

  13. Parker, D. M., Lodola, A., andHolbrook, J. J. 1978. Use of the sulphite adduct of nicotinamide-adenine dinucleotide to study ionizations and the kinetics of lactate dehydrogenase and malate dehydrogenase. Biochem. J. 173:959–967.

    Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  15. Cremer, J. E., andHeath, D. F. 1974. The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem. J. 142:527–544.

    Google Scholar 

  16. Ramsey, R. B. 1976. Leucine andd-3-hydroxybutyrate as lipid precursors in developing rat spinal cord and liver. Biochem. J. 158:501–594.

    Google Scholar 

  17. Webber, R. J., andEdmond, J. 1977. Utilization ofl-(+)-3-hydroxybutyrate,D-(−)-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18-day-old rat. J. Biol. Chem. 252:5222–5226.

    Google Scholar 

  18. Takagaki, G. 1968. Control of aerobic glycolysis and pyruvate kinase activity in cerebral cortex slices. J. Neurochem. 15:903–907.

    Google Scholar 

  19. Wilbur, D. O., andPatel, M. S. 1974. Development of mitochondrial pyruvate metabolism in rat brain. J. Neurochem. 22:709–715.

    Google Scholar 

  20. Chainy, G. B. N., andKanungo, M. S. 1978. Induction and properties of the cerebral hemisphere of rats of various ages. J. Neurochem. 30:419–427.

    Google Scholar 

  21. Schwark, W. S., Singhal, R. L., andLing, G. M. 1971. Metabolic control mechanisms in mammalian systems. Regulation of pyruvate kinase in the cerebral cortex. J. Neurochem. 18:123–134.

    Google Scholar 

  22. Sing, S. N., andKanungo, M. S. 1968. Alterations in lactate dehydrogenase of the brain, heart, skeletal muscle and liver of rats of various ages. J. Biol. Chem. 243:4526–4529.

    Google Scholar 

  23. Land, J. M., Booth, R. F. G., Berger, R., andClark, J. B. 1977. Development of mitochondrial energy metabolism in rat brain. Biochem. J. 164:339–348.

    Google Scholar 

  24. Williamson, D. H., andBuckley, B. M. 1973. Pages 81–96,in Hommes, F. A. andvan den Berg, C. J. (eds.), Inborn Errors of Metabolism, Academic Press, London.

    Google Scholar 

  25. MacDonnell, P. C., andGreengard, O. 1974. Enzymes in intracellular organelles of adult and developing rat brain. Arch. Biochem. Biophys. 163:644–655.

    Google Scholar 

  26. Parmacek, M. S., Fox, J. H., Harrison, W. H., Garron, D. C., andSwenie, D. 1979. Effect of aging on brain respiration and carbohydrate metabolism of CBF1, mice. Gerontology 25:185–191.

    Google Scholar 

  27. Levy, M., andToury, R. 1970. Etude de l'evolution des activités des enzymes mitochondriaux de l'hepatocite au cours du developpement du rat. Biochem. Biophys. Acta 216:318–327.

    Google Scholar 

  28. Lang, C. A. 1965. Respiratory enzymes in the heart and liver of the prenatal and postnatal rat. Biochem. J. 95:365–371.

    Google Scholar 

  29. Gregson, N. A., andWilliams, P. L. 1969. A comparative study of brain and liver mitochondria from newborn and adult rats. J. Neurochem. 16:617–626.

    Google Scholar 

  30. Mackhann, G. M., Levy, R., andHo, W. 1965. Biosynthesis of sulphatides in rat brain. Fed. Proc. 24:361 (abstract 1286).

    Google Scholar 

  31. Andrés, A., Satrústegui, J., andMachado, A. 1980. Development of NADPH producing pathways in rat heart. Biochem. J. 186:799–803.

    Google Scholar 

  32. Watanabe, T., Goto, H., andOgasawara, N. 1974. Specific development of isocitrate dehydrogenase in rat brain. Biochim. Biophys. Acta 358:340–346.

    Google Scholar 

  33. Simpson, E. R., andEstabrook, R. W. 1969. Mitochondrial malic enzyme: The source of reduced nicotinamide adenine nucleotide phosphate for steroid hydroxylation in bovine adrenal cortex mitochondria. Arch. Biochem. Biophys. 129:384–395.

    Google Scholar 

  34. Krebs, H. A. 1971. Some aspects of the regulation of fuel supply in omnivorous animals. Adv. Enzyme Regul. 10:397–420.

    Google Scholar 

  35. Davis, J., andHimwich, W. A. 1975. Neurochemistry of the developing and aging mammalian brain, Pages 329–357,in Ordy, J. M., andBrizzee, K. R. (eds.), Neurobiology of Aging, Advances in Behavioral Biology, Vol. 16, Plenum Press, New York.

    Google Scholar 

  36. Lee, Y. P., andLardy, H. A. 1965. Influence of thyroid hormones onl-α-glycerophosphate dehydrogenase and other dehydrogenases in various organs of the rat. J. Biol. Chem. 240:1427–1436.

    Google Scholar 

  37. Vitorica, J., Satrustegui, J., andMachado, A. Metabolic implications of ageing: decreased lipogenesis and enhancement of gluconeogenic capacity in the aged rat liver. Enzyme (in press).

  38. Vitorica, J., Cano, J., Satrustegui, J., andMachado, A. Comparison between developmental and senescent changes in enzyme activities linked to energy metabolism in rat heart. Mech. Ageing Devel. (in press).

  39. Diez-Guerra, J., Aragon, M. C., Gimenez, C., andValdevieso, F. Effect of thyroid hormones on the malic enzyme activity in rat brain during development. Developmental Neuroscience (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitorica, J., Andrés, A., Satrústegui, J. et al. Age-related quantitative changes in enzyme activities of rat brain. Neurochem Res 6, 127–136 (1981). https://doi.org/10.1007/BF00964829

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964829

Keywords

Navigation