Skip to main content
Log in

Mature and immature synaptosomal membranes have a different lipid composition

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Subfractionation of the optic tectum in chick embryos results in the isolation of two fractions enriched in synaptosomes (fraction A and fraction B). In chicks after hatching, this fractionation results in the isolation of a single synaptosomal fraction (fraction B) and of a fraction enriched in myelin membranes devoid of synaptosomes (fraction A). The lipid composition of synaptosomal fractions (A and B) and corresponding synaptosomal plasma membranes has been analyzed and compared to the lipid composition of similar fractions isolated from 2–3 day-old chicks. The phospholipid composition of fraction A in embryos was mainly represented by phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PE content was significantly lower than that of PC, which accounted for by approximately 50%. Sphingomyelin (SP) and phosphatidylinositol (PI) accounted for by only 6% of the total membrane phopsholipids. Fraction A isolated from the young chicks showed many significant changes. PC accounted for by approximately 40% and PE made up 35%. The amount of phosphatidylserine (PS) and SP increased. These data parallel our previous morphological observations, which showed that fraction A contains immature synaptosomes in embryos but myelin membranes and no synaptosomes in the young chicks. Fraction B has been shown to contain synaptosomes at all stages considered. It possessed in embryos a lipid composition similar to fraction A, except that PC content was higher in young embryos. The analyses on membrane fractions confirmed these results. On the contrary, this fraction showed many significant changes after hatching. The content of PC was significantly reduced, PE/PC ratio was significantly increased as well as ethanolamine plasmalogen (PLE) content. The percentage of PS, PI and SP were increased. The composition of fatty acids of the total fraction of phospholipids was also examined. The results parallel the observations on phospholipid classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binaglia L., Goracci G., Porcellati G., Roberti R., andWoelk H. 1973. The synthesis of choline and ethanolamine phosphoglycerides in neuronal and glial cells of rabbit in vitro. J. Neurochem. 21:1067–1082.

    PubMed  Google Scholar 

  2. Breckendridge W. C., Gombos G., andMorgan I. G. 1972. The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim. Biophys. Acta 266:695–707.

    PubMed  Google Scholar 

  3. Cantino D., andSisto-Daneo L. 1973. Synaptic junction in the developing chick optic tectum. Experientia 29:85–87.

    PubMed  Google Scholar 

  4. Carrigan O. W., andChargaff E. 1963. Studies on the mucolipids and the cerebrosides of chicken brain during embryonic development. Biochim. Biophys. Acta 70:452–464.

    PubMed  Google Scholar 

  5. Cotman C. W., Blank M. L., Mohel A. andSnyder F. 1969. Lipid composition of synaptic plasma membranes isolated from rat brain by zonal centrifugation. Biochemistry 8:4606–4612.

    PubMed  Google Scholar 

  6. Cotman C. W. andMatthews D. A. 1971. Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochem. Biophys. Acta 249:380–394.

    PubMed  Google Scholar 

  7. Ernster L., Zetterström R., andLindberg O. 1950. Method for the determination of tracer phosphate in biological material. Acta Chem. Scand. 4:942–947.

    Google Scholar 

  8. Folch-Pi J., Lees M., andSloane-Stanley S. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues J. Biol. Chem. 226:497–509.

    PubMed  Google Scholar 

  9. Freysz L., Lastennet A., andMandel P. 1972. Phosphocholine diglycerides transferase activity during development of the chicken brain. J. Neurochem. 19:2599–2605.

    PubMed  Google Scholar 

  10. Freysz L., Horrocks L. A., andMandel P. 1980. Activities of enzymes synthetizing diacyl, alkylacyl, and alkenylacyl glycerophosphoethanolamine and glycerophosphocholine during development of chicken brain. J. Neurochem. 34:963–969.

    PubMed  Google Scholar 

  11. Geising M., andZelliken F. 1980 Lipid metabolism of developing central nervous tissues in organotypic cultures: III-Ganglionic control of glycerolipids and fatty acids in cortex gray matter. Neurochem. Res. 5:257–270.

    PubMed  Google Scholar 

  12. Gremo F., Panzica-Viglietti C., andPanzica G. C. 1977. Nerve endings isolated from chick embryonic tectum: II-Developmental aspects of synaptosomal membranes. Experientia 33:1965–1958.

    Google Scholar 

  13. Gremo F., Panzica-Viglietti C., andPanzica G. C. 1982. Development of neuronal connections in chick embryonic retino-tectal system: an overview. Neurochem. Res. 7:239–255.

    Google Scholar 

  14. Hamberger A., andSvennerholm L. 1971. Composition of gangliosides and phospholipids of neuronal and glial cell enriched fractions. J. Neurochem. 18:1821–1829.

    PubMed  Google Scholar 

  15. Hitzemann R. J., andJohnson D. A. 1983. Developmental changes in synaptic membrane lipid composition and fluidity. Neurochem. Res. 8:121–131.

    PubMed  Google Scholar 

  16. Horrocks L. A., andSun G. Y. 1972. Ethanolamine plasmalogens. Pages 223–231.in Rodnight O. and Marks, N. (eds.) Research Methods in Neurochemistry, Plenum Press, New York.

    Google Scholar 

  17. Jakson R. L., andGotto A. M. 1974. Phospholipids in Biology and Medicine. N. Engl. J. Med. 290:24–29.

    PubMed  Google Scholar 

  18. Lapetina E. G., Soto E. F., andDe Robertis E. 1968. Lipids and proteolipids in isolated subcellular membranes of rat brain cortex. J. Neurochem. 15:437–445.

    PubMed  Google Scholar 

  19. Livett B. G., Rostas G. A., Jeffrey P. L., andAustin L. 1974. Antigenicity of isolated synaptosomal membranes. Exptl. Neur. 43:330–338.

    Google Scholar 

  20. Lowry O. H., Rosembrough N. J., Farr A. L., andRandall R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  21. Kishimoto Y., Agranoff B. W., Radin N. S., andBurton R. M. 1969. Comparison of the fatty acids of lipids of cerebellular brain fractions. J. Neurochem. 16:397–404.

    PubMed  Google Scholar 

  22. Kurihara T., andTsukada Y. 1968. 2′, 3′ cyclic nucleotide 3′-phosphohydrolase in the developing chick brain and spinal cord. J. Neurochem. 15:827–832.

    Google Scholar 

  23. Miyamoto K., Stephanides L. M., andBershon J. 1966. Fatty acids of glycerophosphatides in developing chick embryonic brain and liver. J. Lipid Res. 7:664–670.

    PubMed  Google Scholar 

  24. Norton W. T., andPoduslo S. E. 1973. Myelinization in rat brain: changes in myelin composition during brain maturation. J. Neurochem. 21:759–773.

    PubMed  Google Scholar 

  25. Panzica-Viglietti C., Panzica G. C., Di Renzo F., Gremo F., andMarchisio P. C. 1976. Isolation of synaptosomes from developing optic tectum of chick embryo. J. Submicrosc. Cytol. 8:259.

    Google Scholar 

  26. Panzica-Viglietti C., Panzica G. C., andGremo F. 1977. Nerve endings isolated from chick embryonic optic tectum: I-Developmental aspects of intact synaptosomes. Experientia 33:458–460.

    PubMed  Google Scholar 

  27. Panzica G. C., andPanzica-Viglietti C. 1981. Electron microscopy of synaptic structures in the optic tectum of developing chick embryos. Pages 167–173,in Lierse W. and Beck E. (eds.), Studies of Normal and Abnormal Development of the Nervous System, Karger, Basel.

    Google Scholar 

  28. Papahadjopoulos D. 1968. Surface properties of acid phospholipids: Interaction monolayers and hydrated liquid crystals with uni-and bivalent metal ions. Biochim. Biophys. Acta. 163:240–254.

    PubMed  Google Scholar 

  29. Romanoff A. L. 1960. The nervous system Pages 209–362, Romanoff A. L. (ed.), The Avian Embryo, McMillan, New York.

    Google Scholar 

  30. Rouser G., Yamamoto A., andKritchevsky G. 1971. Lipids of the nervous system: Changes with age, species variations, lipid class relationship and comparison of brain to other organs. Pages 91–109, Paoletti R. and Davison A. N. (eds.), Chemistry and Brain Development, Plenum Press, New York.

    Google Scholar 

  31. Sedlacek J. 1967. Development of optic potential in chick embryos. Physiol. Bohemoslov. 16:531–537.

    PubMed  Google Scholar 

  32. Siek T., andNewbourgh R. W. 1965. Phospholipid composition of chick brain during development. J. Lipid Res. 6:552–555.

    PubMed  Google Scholar 

  33. Sperry W. H. 1955. Lipids of the brain during early development in the rat. Pages 261–265,in Waelsh H., (ed.), Biochemistry of Developing Nervous System, Academic Press, New York.

    Google Scholar 

  34. Sun G. Y., andHorrocks L. A. 1971. The acyl and alk-1-enyl groups in the major phosphoglycerides from ox brain myelin and mouse brain microsomal, mitochondrial and myelin fractions. Lipids 5:1006–1012.

    Google Scholar 

  35. Sun G. Y., andSun A. 1972. Phospholipids and acyl groups of synaptosomal and myelin membranes isolated from the cerebral cortex of squirrel monkey. Biochim. Biophys. Acta 280:306–315.

    PubMed  Google Scholar 

  36. Svennerholm L., Vanier M. T., andJunbjer B. 1978. Changes in fatty acid composition of human brain myelin lipids during maturation. J. Neurochem. 30:1383–1390.

    PubMed  Google Scholar 

  37. Vorbenck M. L., andMarinetti T. W. 1965. Separation of glycosil diglycerides from phosphatides using silicic acid column chromatography. J. Lipid Res. 6:36–41.

    Google Scholar 

  38. Yusuf H. K. M., Haque Z., andMozaffar Z. 1981. Effect of malnutrition and subsequent rehabilitation on the development of mouse brain myelin. J. Neurochem. 36:924–930.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gremo, F., De Medio, G.E., Trovarelli, G. et al. Mature and immature synaptosomal membranes have a different lipid composition. Neurochem Res 10, 133–144 (1985). https://doi.org/10.1007/BF00964778

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964778

Keywords

Navigation