Skip to main content
Log in

Opposing interactions of ionophores (valinomycin and monensin) on calcium ion uptake in rat retinal preparations

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Valinomycin is a potent inhibitor of taurine-stimulated ATP-dependent calcium ion uptake in rat retinal membrane preparations but had no effect on ATP-dependent calcium ion uptake in the absence of taurine and no effect on ATP-independent calcium ion uptake. The presence of potassium ions in the buffer systems were required for valinomycin to be inhibitory. On the contrary, monensin stimulated calcium ion uptake in the ATP-dependent system but had no effect on ATP-independent calcium ion uptake. The crude retinal homogenate was also fractionated into various subcellular components. The fraction which contained photoreceptor cell synaptosomes (P1) had a higher, specific activity for taurinestimulated ATP-dependent calcium ion uptake than the crude homogenate or either the fractions which contained synaptosomes derived from the plexiform layer (P2) or rod outer segments (ROS). No differences in calcium ion uptake were observed in the various subcellular fractions compared to the homogenate when assayed for ATP-dependent calcium ion uptake. Valinomucin inhibited both ATP-dependent and taurine-stimulated ATP-dependent calcium ion uptake in the P1, P2, and ROS fractions while monensin stimulated the ATP-dependent calcium ion uptake in the subcellular fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobsen, J. G., andSmith, L. H. Jr. 1968. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 48:424–491.

    PubMed  Google Scholar 

  2. Keen, P., andYates, R. A. 1974. Distribution of amino acids in subdivided rat retinae. Br. J. Pharmacol. 52:118P.

    Google Scholar 

  3. Orr, H. T., Cohen, A. I., andLowry, O. H. 1976. The distribution of taurine in the vertebrate retina. J. Neurochem. 26:609–611.

    PubMed  Google Scholar 

  4. Kennedy, A. J., Neal, M. J. andLolley, R. N. 1977. The distribution of amino acids within the rat retina. J. Neurochem. 29:157–159.

    PubMed  Google Scholar 

  5. Voaden, M. J., Oraedu, A. C. I., Marshall, J., andLake, N. 1981. Taurine in the retina. Pages 145–160, in Schaffer, S. W., Baskin, S. I., andKocsis, J. J. (eds), The Effects of Taurine on Excitable Tissues, Spectrum Publications, New York.

    Google Scholar 

  6. Hayes, K. C., Carey, R. E., andSchmidt, S. Y. 1975. Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951.

    PubMed  Google Scholar 

  7. Hayes, K. C., Stephan, Z. F., andSturman, J. A. 1980. Growth depression in taurinedepleted infant monkeys. J. Nutr. 110:2058–2064.

    PubMed  Google Scholar 

  8. Lake, N. 1982. Depletion of taurine in the adult rat retina. Neurochem. Res. 7:1385–1390.

    PubMed  Google Scholar 

  9. Quesada, O., Huxtable R., Cárabez, A., andPasantes-Morales, H. 1982. Damage produced by taurine-depleting agents in photoreceptors of rats reared in light or dark. Invest. Ophthalmol. Vis. Sci. (Suppl.) 22:283.

    Google Scholar 

  10. Sheikh, K. 1981. Taurine deficiency and retinal defects associated with small intestine bacterial overgrowth. Gastroenterology 80:1363.

    Google Scholar 

  11. Geggel, H. S., Ament, M. E., Heckenlively, J. R., andKopple, J. D. 1982. Evidence that taurine is an essential amino acid in children receiving total parenteral nutrition. Clin. Res. 30:486A.

    Google Scholar 

  12. Nishimura, C., Ida, S., andKuriyama, K. 1983. Biosynthesis of taurine in frog retina-differential effects of physiological light and γ-ray irradiation. Pages 233–250,in Kuriyama, K., Huxtable, R. J., andIwata, H. (eds.), Sulfur Amino Acids: Biochemical and Clinical Aspects, Alan R. Liss, New York.

    Google Scholar 

  13. Lombardini, J. B., andPrien, S. D. 1983. Taurine binding by rat retinal membranes. Exp. Eye Res. 37:239–250.

    PubMed  Google Scholar 

  14. Pasantes-Morales, H., andCruz, C. 1983. Possible mechanisms involved in the protective action of taurine on photoreceptor structure. Pages 263–276,in Kuriyama, K., Huxtable, R. J., andIwata, H. (eds.), Sulfur Amino Acids: Biochemical and Clinical Aspects, Alan R. Liss, New York.

    Google Scholar 

  15. McBroom, M. J., andWelty, J. D. 1977. Effects of taurine on heart calcium in the cardiomyopathic hamster. J. Mol. Cell. Cardiol. 9:853–858.

    PubMed  Google Scholar 

  16. Azari, J., Brumbaugh, P., andHuxtable, R. 1980. Prophylaxis by taurine in the hearts of cardiomyopathic hamsters. J. Mol. Cell. Cardiol. 12:1353–1366.

    PubMed  Google Scholar 

  17. Kramer, J. H., Chovan, J. P., andSchaffer, S. W. 1981. Effect of taurine on calcium paradox and ischemic heart failure. Am. J. Physiol. 240:H238-H246.

    PubMed  Google Scholar 

  18. Hagins, W. A., andYoshikami, S. 1974. A role of Ca2+ in excitation of retinal rods and cones. Exp. Eye Res. 18:299–305.

    PubMed  Google Scholar 

  19. Saibil, H. 1982. Rival transmitters in visual transduction. Nature 297:106–107.

    PubMed  Google Scholar 

  20. Pressman, B. C. 1976. Biological applications of ionophores. Ann. Rev. Biochem. 45:501–530.

    PubMed  Google Scholar 

  21. Schnetkamp, P. P. M., Daemen, F. J. M., andBonting, S. L. 1977. Biochemical aspects of the visual process. XXXVI. Calcium accumulation in cattle rod outer segments: Evidence for a calcium-sodium exchange carrier in the rod sac membrane. Biochim. Biophys. Acta 468:259–270.

    PubMed  Google Scholar 

  22. Lombardini, J. B. 1982. Effects of valinomycin on ATP-dependent, taurine-stimulated calcium uptake in rat retinal membrane preparations. Invest. Ophthalmol. Vis. Sci. (Suppl.) 24:161.

    Google Scholar 

  23. Lombardini, J. B. 1983. Monensin, a carboxylic ionophore, stimulates calcium uptake in the rat retina in the presence of ATP and ATP plus taurine. Soc. Neurosci. Absts. 9:807.

    Google Scholar 

  24. Redburn, D. A., andThomas, T. N., 1979. Isolation of synaptosomal fractions from rabbit retina. J. Neurosci. Meth. 1:235–242.

    Google Scholar 

  25. Kuo, C.-H., andMiki, N. 1980. Stimulatory effect of taurine on Ca-uptake by disc membranes from photoreceptor cell outer segments. Biochem. Biophys. Res. Commun. 94:646–651.

    PubMed  Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  27. López-Colomé, A. M., andPasantes-Morales, H. (1981). Effect of taurine on45Ca transport in frog retinal rod outer segments. Exp. Eye Res. 32:771–780.

    PubMed  Google Scholar 

  28. Pasantes-Morales, H. 1982. Taurine-calcium interactions in frog rod outer segments: taurine effects on an ATP-dependent calcium translocation process. Vis. Res. 22:1487–1493.

    PubMed  Google Scholar 

  29. Pasantes-Morales, H., Ademe, R. M., andLópez-Colomé 1979. Taurine effects on45Ca2+ transport in retinal subcellular fractions. Brain Res. 172:131–138.

    PubMed  Google Scholar 

  30. Lombardini, J. B. 1983. Effects of ATP and taurine on calcium uptake by membrane preparations of the rat retina. J. Neurochem. 40:402–406.

    PubMed  Google Scholar 

  31. Lombardini, J. B. 1983. Effects of taurine on ATP-dependent calcium uptake in rat retinal membrane preparations. Pages 251–262,in Kuriyama, K., Huxtable, R. J., andIwata, H. (eds), Sulfur Amino Acids: Biochemical and clinical Aspects, Alan R. Liss, New York.

    Google Scholar 

  32. Pasantes-Morales, H., andQuesada, O. 1980. Effects of the ionophores X537A and A23187 on GABA, glycine, and taurine release from chick retinal subcellular fractions. Neurochem. Res. 5:1077–1088.

    PubMed  Google Scholar 

  33. Sulakhe, S. J., andSulakhe, P. V. 1979. Interactions of ionophores (A23187 and X537A) with sarcolemma and sarcoplasmic reticulum. Gen. Pharmacol. 10:103–113.

    PubMed  Google Scholar 

  34. McMurray, W. C., andBegg, R. W. 1959. Effect of valinomycin on oxidative phosphorylation. Arch. Biochem. Biophys. 84:546–548.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombardini, J.B. Opposing interactions of ionophores (valinomycin and monensin) on calcium ion uptake in rat retinal preparations. Neurochem Res 10, 77–88 (1985). https://doi.org/10.1007/BF00964773

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964773

Keywords

Navigation