Skip to main content
Log in

Effect of hypothyroidism on the labeling of the various RNA species in developing rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of hypothyroidism on the in vitro incorporation of [3H]uridine into different RNA species in tissue slices of rat cerebral hemispheres at 5, 10, 15, and 21 days of age has been investigated. Gel electrophoresis analysis of total, nuclear and microsomal RNA was also accomplished. The results obtained indicate that RNA labeling is differently influenced by hypothyroidism at the various ages examined. RNA labeling is not significantly affected at 5 days of age while at later ages and especially at 21 days it is higher in hypothyroid rats compared to the controls. Moreover distinct differences at the various ages in the transport of newly synthesized RNA from the nucleus to the cytoplasm in the two groups of animals were found. These results are in agreement with the hypothesis that thyroid hormone deficiency causes a delay of the processes of cell proliferation and differentiation in developing rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balázs R., Patel, A. J., andLewis, P. D. 1977. Metabolic influences on cell proliferation in the brain. Pages 43–88,in Davison A. N. (ed.), Biochemical Correlates of Brain Structure and Function, Academic Press, London.

    Google Scholar 

  2. Dobbing, J., andSmart, J. L. 1970. Vulnerability of developing brain and behaviour. Br. Med. Bull. 30: 164–168.

    Google Scholar 

  3. Pasquini, J. M., Kaplun, B., Garcia Argiz, C. A., andGomez, C. J. 1967. Hormonal regulation of brain development. I. The effect of neonatal thyroidectomy upon nucleic acids, proteins and two enzymes in developing cerebral cortex and cerebellum of the rat. Brain Res. 6: 621–634.

    PubMed  Google Scholar 

  4. Grave, G. D. 1977. Thyroid hormones and brain development, Raven Press, New York.

    Google Scholar 

  5. Geel, S. E., andGonzales, L. K. 1975. In vitro studies of cerebral cortical RNA and nucleotide metabolism in hypothyroidism. J. Neurochem. 25: 377–385.

    PubMed  Google Scholar 

  6. Patel, J. A., Rabié, A., Lewis, P. D., andBalázs, R. 1976. Effect of thyroid deficiency on postnatal cell formation in the rat brain. Brain Res. 104: 33–48.

    PubMed  Google Scholar 

  7. Gadaleta, M. N., Minervini, G. R., Renis, M., Zacheo, G., Bleve, T., Serra, I., andGiuffrida, A. M. 1980. Effect of hypothyroidism on some aspects of mitochondrial biogenesis and differentiation in the cerebellum of developing rats. Pages 395–398,in Kroon A. M. andSaccone C. (eds.), The organization and Expression of the Mitochondrial Genome, Elsevier/North-Holland Biomedical Press.

  8. Gadaleta, M. N., Renis, M., Minervini, G. R., Serra, I., Bleve, T., Giovine, A., Zacheo, G., andGiuffrida, A. M. 1984. Effect of hypothyroidism on the biogenesis of free mitochondria in the cerebral hemispheres and in the cerebellum of rat during postnatal development. Neurochem. Res. 9: 1817–1831.

    Google Scholar 

  9. Balázs, R., Kovacs, S., Teichgraber, P., Cocks, W. A., andEayrs, J. T. 1968. Biochemical effects of thyroid deficiency on the developing brain. J. Neurochem. 15: 1335–1349.

    PubMed  Google Scholar 

  10. Oklund, A., andTimiras, P. S. 1977. Influence of thyroid levels in brain ontogenesis in vivo and in vitro. Pages 33–44,in Grave G. D. (ed.), Thyroid hormones and brain development, Raven Press, New York.

    Google Scholar 

  11. Gomez, C. J., Duvilanski, B. H., Soto, A. M., andDe Guglielmone, A. E. R. 1972. Hormonal regulation of brain development. VI. Kinetic studies of the incorporation in vivo of [3H]orotic acid into RNA of brain subcellular fractions of 10-day-old normal and hypothyroid rats. Brain Res. 44: 231–243.

    PubMed  Google Scholar 

  12. Serra, I., Renis, M., Lombardo, B., Ragonese, P., andGiuffrida, A. M. 1982. Effect of hypothyroidism on the synthesis and maturation of the various RNA species in developing rat brain. Page 346,in Giuffrida, A. M., Gombos G., Benzi G., andBachelard H. S. (eds.), Basic and Clinical Aspects of Molecular Neurobiology, Menarini Publisher, Milano.

    Google Scholar 

  13. Mc Ilwain, H., andBuddle, H. L. 1953. Techniques in tissue metabolism. I. A mechanical chopper. Biochem. J. 53: 412–420.

    PubMed  Google Scholar 

  14. Serra, I., Cupello, A., Gadaleta, M. N. Viola, M., Ragonese, P., andGiuffrida, A. M. 1983. Labeling of RNA in young and adult rat brain: evidence for different RNA processing. Neurochem. Res. 8: 433–447.

    PubMed  Google Scholar 

  15. Giuffrida, A. M., Cox, D., andMathias, A. P. 1975. RNA polymerase activity in various classes of nuclei from different regions of rat brain during postnatal development. J. Neurochem. 24: 749–755.

    PubMed  Google Scholar 

  16. Guiffrida, A. M., Gadaleta, M. N., Serra, I., Renis, M., Geremia, E., DelPrete, G., andSaccone, C. 1979. Mitochondrial DNA, RNA and protein synthesis in different regions of developing rat brain. Neurochem. Res. 4: 37–52.

    PubMed  Google Scholar 

  17. Schmidt, G., andTannhauser, S. J. 1945. A method for the determination of deoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissue. J. Biol. Chem. 161: 83–89.

    Google Scholar 

  18. Wannemacher, R. A., Jr., Banks, W. L. Jr. andWunner, W. H. 1965. Use a single tissue extract to determine cellular protein and nucleic acid concentrations and rate of amino acid incorporation. Anal. Biochem. 11: 320–326.

    PubMed  Google Scholar 

  19. Serra, I., Renis, M., Geremia, E., Grillo, G., Gadaleta, M. N., andGiuffrida, A. M. 1979. Mitochondrial macromolecular biosynthesis in different brain regions of young and adult rats. Bull. Mol. Biol. and Med. 4: 251–265.

    Google Scholar 

  20. Plagemann, P. G. W. 1971. Nucleotide pools of Novikoff rat hepatoma cells growing in suspension culture. I. Kinetics of incorporation of nucleosides into nucleotide pools and poll sizes during growth cycle. J. Cell. Physiol. 77: 213–240.

    PubMed  Google Scholar 

  21. Cupello, A., andHyden, H. 1975. Fractionation of RNA from brain synaptosomes and cytoplasmic subcellular fractions. J. Neurochem. 25: 399–406.

    PubMed  Google Scholar 

  22. Loening, V. E. 1967. The fractionation of high-molecular weight ribonucleic acid by polyacrylamide gel electrophoresis. Biochem. J. 102: 251–257.

    PubMed  Google Scholar 

  23. Rabié, A., Favre, C., Clavel, M. C., andLegrand, J. 1979. Sequential effects of thyroxine on the developing cerebellum of rats made hypothyroid by PTU. Brain Res. 161: 469–479.

    PubMed  Google Scholar 

  24. Weichsel, M. E. Jr., Clark, B. R., andPoland, R. E. 1977. Effect of hypothyroidism on aspartate transcarbamilase, uridine kinase and DNA biosynthesis during cerebellar development in the rat. Biol. Neonate 32: 5–14.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, I., Renis, M., Lombardo, B. et al. Effect of hypothyroidism on the labeling of the various RNA species in developing rat brain. Neurochem Res 10, 33–47 (1985). https://doi.org/10.1007/BF00964770

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964770

Keywords

Navigation