Skip to main content
Log in

The effect of various amino acids and drugs on thepara-andmeta-hydroxyphenylacetic acid concentrations in the mouse caudate nucleus

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Injection ofl-p-tyrosine (800 mg/kg, 2 h) increased the mouse striatalpara-hydroxyphenylacetic acid (p-HPAA) concentrations. A smaller dose ofd,l-m-tyrosine (20 mg/kg, 2h) produced a larger increase in mouse striatalmeta-hydroxyphenylacetic acid (m-HPAA) concentrations. The administration ofl-phenylalanine to mice caused a slight increase in thep-HPAA concentrations in the corpus striatum after 2h while a larger dose ofl-phenylalanine (800 mg/kg) produced a greater increase. Eight hours followingl-phenylalanine injection,p-HPAA concentrations were still elevated. Withd-phenylalanine a significant increase was observed at eight hours after drug administration.

Two drugs which reduce dopamine synthesis, α-methyl-para-tyrosine and apomorphine, decreasedm-HPAA striatal concentrations without affectingp-HPAA concentrations. From these results, it is proposed that tyrosine hydroxylase activity determinesp-HPAA concentrations by regulatingp-tyrosine availability. This enzyme may also synthesizem-tyrosine which is subsequently decarboxylated to formm-tyramine and then oxidatively deaminated to formm-HPAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blum, L. 1908. Uber den abbau aromatischer substantzen im menschlichen organismus. Arch. Exp. Path. Pharmak. 59:273–298.

    Google Scholar 

  2. Flatow, L. 1910. Uber den abbau von aminosauren im organismus. Hoppe-Seyl. Z. 64:367–392.

    Google Scholar 

  3. Pogrund, R. S., Drell, W., andClark, W. G. 1961. Metabolism of 3-hydroxy and 3,4-dihydroxyphenylpyruvic acids in vivo. J. Pharmacol. Exp. Ther. 131:294–307.

    PubMed  Google Scholar 

  4. Juorio, A. V., andBoulton, A. A. 1982. The effect of some precursor amino acids and enzyme inhibitors on the mouse striatal concentrations of tyramines and homovanillic acid. J. Neurochem. 39:859–863.

    PubMed  Google Scholar 

  5. Oster, K. A., andSchlossman, N. C. 1942. Histochemical demonstration of amine oxidase in the kidney. J. Cell. Comp. Physiol. 20:373–378.

    Google Scholar 

  6. McQuade, P. S., Juorio, A. V., andBoulton, A. A. 1981. Estimation of thep- andm-isomers of hydroxyphenylacetic acid in mouse brain by a gas chromatographic procedure: their distribution and the effects of some drugs. J. Neurochem. 37:735–739.

    PubMed  Google Scholar 

  7. Karoum, F., Gillin, J. C., Wyatt, R. J., andCosta, E. 1975. Mass fragmentography of nanogram quantities of biogenic amine metabolites in human cerebrospinal fluid and whole rat brain. Biomed. Mass. Spectrom. 2:183–189.

    Google Scholar 

  8. Durden, D. A., and Boulton, A. A. 1981. Identification and distribution ofm- andp-hydroxyphenylacetic acids in the brain of the rat. J. Neurochem. 36:129–135.

    PubMed  Google Scholar 

  9. Chirigos, M. A., Greengard, P., andUdenfriend, S. 1960. Uptake of tyrosine by rat brain in vivo. J. Biol. Chem. 235:2075–2079.

    PubMed  Google Scholar 

  10. Gibson, C. J., andWurtman, R. J. 1978. Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci. 22:1399–1406.

    PubMed  Google Scholar 

  11. Carlsson, A., andLindquist, M. 1978. Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino acids in rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 303:157–164.

    Google Scholar 

  12. Sved, A., andFernstrom, J. 1981. Tyrosine availability and dopamine synthesis in the striatum: studies with gamma butyrolactone. Life Sci. 29:743–748.

    PubMed  Google Scholar 

  13. Boulton, A. A., andHuebert, N. D. 1981. Biosynthesis of some urinary trace amines in the rat and the human. Res. Commun. Chem. Pathol. Pharmacol. 34:295–310.

    PubMed  Google Scholar 

  14. Faull, K. F., Gan, I., Halpern, B., Hammond, J., Im, S., Cotton, R. G. H., Danks, D. M., andFreeman, R. 1977. Metabolic studies on two patients with nonhepatic tyrosinemia using deuterated tyrosine loads. Pediat. Res. 11:631–637.

    PubMed  Google Scholar 

  15. Edwards, D. J., andRizk, M. 1981. Effects of amino acid precursors on catecholamine synthesis in the brain. Prog. Neuropsychopharmacol. 5:569–572.

    PubMed  Google Scholar 

  16. Edwards, D. J. 1982. Possible role of octopamine and tyramine in the antihypertensive and antidepressant effects of tyrosine. Life Sci. 30:1427–1434.

    PubMed  Google Scholar 

  17. Miller, J. E., andLitwack, G. 1969. Subcellular distribution of tyrosine aminotransferase in rat brain. Arch. Biochem. Biophys.134:149–159.

    PubMed  Google Scholar 

  18. Ohisalo, J. J., Andersson, B. M., Viljanen, A. A., andAnderson, S. M. 1982. Is there a brain tyrosine aminotransferase? Biochem. J. 204:621–622.

    PubMed  Google Scholar 

  19. Mitoma, C., Posner, H. S., Bogdanski, D. F., andUdenfriend, S. 1957. Biochemical and pharmacological studies ono-tyrosine and itsmeta andpara analogues. A suggestion concerning phenylketonuria. J. Pharmacol. Exp. Ther. 120:188–194.

    PubMed  Google Scholar 

  20. Fell, U., Greenway, A. M., andHoskins, J. A. 1979. The metabolism ofl-m-tyrosine in man. Biochem. Med. 22:246–255.

    PubMed  Google Scholar 

  21. Saavedra, J. M. 1974. Enzymatic isotopic assay for and presence of β-phenylethylamine in brain. J. Neurochem. 22:211–216.

    PubMed  Google Scholar 

  22. Boulton, A. A., Dyck, L. E., andDurden, D. A. 1974. Hydroxylation of β-phenylethylamine in the rat. Life Sci. 15:1673–1683.

    PubMed  Google Scholar 

  23. McQuade, P. S., andJuorio, A. V. 1982. The effects of the administration of β-phenylethylamine on tyramine metabolism. Eur. J. Pharmacol. 83:277–282.

    PubMed  Google Scholar 

  24. Ikeda, M., Levitt, M., andUdenfriend, S. 1965. Hydroxylation of phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase. Biochem. Biophys. Res. Commun. 18:482–488.

    PubMed  Google Scholar 

  25. Hoskins, J. A. 1977. The formation ofmeta-hydroxyphenylacetic acid through a direct ring hydroxylation reaction in humans.Biochem. Biophys. Res. Commun. 77:50–56.

    PubMed  Google Scholar 

  26. Spatz, H., andSpatz, N. 1978. Urinary and brain phenylethylamine levels under normal and pathological conditions. Pages 447–474,in A. Mosnaim, andM. Wolf (eds.) Noncatecholic Phenylethylamines: Biological Mechanisms and Clinical Aspects, Part 1, Marcel Dekker, New York.

    Google Scholar 

  27. Mosnaim, A. D., Inwang, E. E., andSabelli, H. C. 1974. The influence of psychotropic drugs on the levels of 2-phenylethylamine in rabbit brain. Biol. Psychiatry 8:227–234.

    PubMed  Google Scholar 

  28. Spector, S., Sjoerdsma, A. andUdenfriend, S. 1965. Blockade of endogenous norepinephrine synthesis by α-methyl-tyrosine an inhibitor of tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 147:86–95.

    PubMed  Google Scholar 

  29. Juorio, A. V. 1979. Drug-induced changes in the formation, storage and metabolism of tyramine in the mouse. Br. J. Pharmacol. 66:377–384.

    PubMed  Google Scholar 

  30. Duffield, P. H., Dougan, D. F. H., Wade, D. N. andDuffield, A. M. 1981. A chemical ionization gas chromatographic mass spectrometric assay for octopamine and tyramine in rat brain. Biomed. Mass Spectrom. 8:170–173.

    PubMed  Google Scholar 

  31. Roos, B. E. 1969. Decrease in homovanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat. J. Pharm. Pharmacol. 21:263–264.

    PubMed  Google Scholar 

  32. Bunney, B. S., Walters, J. R., Roth, R. H., andAghajanian, K. 1973. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185:560–571.

    PubMed  Google Scholar 

  33. Kehr, W., Carlsson, A., andLindquist, M. 1975. Biochemical aspects of dopamine agonists. Pages 185–196,in D. Calne, J. N. Chase, andA. Barbeau (eds.) Dopaminergic Mechanisms, Advances in Neurology, Vol. 9, Raven Press, New York.

    Google Scholar 

  34. Goldstein, M., Freedman, L. S., andBackstrom, T. 1970. The inhibition of catecholamine biosynthesis by apomorphine. J. Pharm. Pharmacol. 22:715–717.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McQuade, P.S., Juorio, A.V. The effect of various amino acids and drugs on thepara-andmeta-hydroxyphenylacetic acid concentrations in the mouse caudate nucleus. Neurochem Res 8, 903–912 (1983). https://doi.org/10.1007/BF00964551

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964551

Keywords

Navigation