Skip to main content
Log in

Immunoblot identification of glial fibrillary acidic protein in rat sciatic nerve, brain, and spinal cord during development

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The appearance of the glial fibrillary acidic protein (GFAP) during embryonic and postnatal development of the rat brain and spinal cord and in rat sciatic nerve during postnatal development was examined by the immunoblot technique. Cytoskeletal proteins were isolated from the central and peripheral nervous system and separated by SDS slab gel electrophoresis or two-dimensional gel electrophoresis. Proteins from the acrylamide gels were transferred to nitrocellulose sheets which were treated with anti-bovine GFAP serum and GFAP was identified by the immunoblot technique. GFAP was present in the embryonic rat brain and spinal cord at 14 and 16 days of gestation respectively. The appearance of GFAP at this stage of neural development suggests that the synthesis of GFAP may be related to the proliferation of radial glial cells from which astrocytes are derived. It is also feasible that GFAP provides structural support for the radial glial cell processes analogous to its role in differentiated astrocytes. GFAP was found to be present in rat sciatic nerves at birth and at all subsequent stages of development. These results indicate that some cellular elements in the rat sciatic nerve, such as Schwann cells, are capable of synthesizing GFAP which is immunochemically indistinguishable from its counterpart in the central nervous system. Thus it appears that GFAP is present both in the central and peripheral nervous system of the rat when the glial cells synthesizing GFAP are still undergoing differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eng, L. F., Vanderhaeghen, J. J., Bignami, A., andGerstl, B. 1971. An acidic protein isolated from fibrous astrocytes. Brain Res. 28:351–354.

    PubMed  Google Scholar 

  2. Dahl, D., andBignami, A. 1973. Glial fibrillary acidic protein from normal human brain. Purifications and properties. Brain Res. 57:343–360.

    PubMed  Google Scholar 

  3. Chiu, F.-C., Korey, B. andNorton, W. T. 1980. Intermediate filaments from bovine, rat, and human CNS: Mapping analysis of the major proteins. J. Neurochem. 34:1149–1159.

    PubMed  Google Scholar 

  4. Eng, L. F. 1980. The glial fibrillary acidic (GFA) protein. Pages 85–117,in R. A. Bradshaw andD. M. Schneider, (eds.), Proteins of the Nervous System, Raven Press, New York.

    Google Scholar 

  5. Noetzel, M. J., Roots, B. I., andAgrawal, H. C. 1983. Appearance of the glial fibrillary acidic protein and phosphorylation of the neurofilament proteins in the developing rat nervous system. Society for Neuroscience Abstracts 9:235.

    Google Scholar 

  6. Chiu, F.-C., Norton, W. T., andFields, K. L. 1981. The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein, and the fibroblast-type filament protein, vimentin. J. Neurochem. 37:147–155.

    PubMed  Google Scholar 

  7. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  8. Fishman, M. A., Hagen, S., Trotter, J. L., O'Connell, K. andAgrawal, H. C. 1979. Use of a stable fluorescent reagent, 2-methoxy-2, 4-diphenyl-3(2H)-furanone, for the visualization and purification of myelin proteins. J. Neurochem. 32:1077–1083.

    PubMed  Google Scholar 

  9. Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature (Lond.) 227:680–685.

    Google Scholar 

  10. Dubray, G., andBezard, G. 1982. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal. Biochem. 119:325–329.

    PubMed  Google Scholar 

  11. Thomas, K. A., Silverman, R. E., Jeng, I., Baglan, N. C., andBradshaw, R. A. 1981. Electrophoretic heterogeneity and polypeptide chain structure of the γ-subunit of mouse submaxillary 7S nerve growth factor. J. Biol. Chem. 256:9147–9155.

    PubMed  Google Scholar 

  12. Towbin, H., Staehelin, T., andGordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350–4354.

    PubMed  Google Scholar 

  13. Gilbert, W. R., Garwood, M. M., Egrawal, D., Schmidt, R. E., andAgrawal, H. C. 1982. Immunoblot identification of phosphorylated basic proteins of rat and rabbit CNS and PNS myelin: Evidence for four phosphorlyated basic proteins and P2 in rat PNS myelin. Neurochem. Res. 7:1495–1506.

    PubMed  Google Scholar 

  14. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007–4021.

    PubMed  Google Scholar 

  15. Dahl, D., Strocchi, P., andBignami, A. 1982. Vimentin in the central nervous system. Differentiation. 22:185–190.

    PubMed  Google Scholar 

  16. Chan, P. H., Huston, J. S., Moo-Penn, W. F., Dahl, D., andBignami, A. 1977. Biochemical studies related to CNS regeneration: Isolation and partial characterization of urea-soluble gliofibrillary acidic protein from bovine brain. Pages 496–524,in Proceedings of the Second Annual Maine Biomedical Science Symposium, Vol. 2, University of Maine Press, Orono.

    Google Scholar 

  17. Schlaeffer, W. W., andZimmerman, U.-J.P. 1981. Calcium-mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord. Neurochem. Res. 6:243–255.

    PubMed  Google Scholar 

  18. DeArmond, S. J., Fajardo, M., Naughton, S. A., andEng, L. F. 1983. Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: An electroblot study. Brain Res. 262:275–282.

    PubMed  Google Scholar 

  19. Bignami, A. andDahl, D. 1974. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp. Neuro. 153:27–38.

    Google Scholar 

  20. Raju, T., Bignami, A., andDahl, D. 1981. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Dev. Biol. 85:344–357.

    PubMed  Google Scholar 

  21. Abney, E. R., Bartlett, P. P., andRaff, M. C. 1981. Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev. Biol. 83:301–310.

    PubMed  Google Scholar 

  22. Choi, B. H. 1981. Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Develop. Brain Res. 1:249–267.

    Google Scholar 

  23. Schmechel, D. E., andRakic, P. 1979. A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat. Embryol. 156:115–152.

    PubMed  Google Scholar 

  24. Bignami, A., andDahl, D. 1973. Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes. Brain Res. 49:393–402.

    PubMed  Google Scholar 

  25. Hartman, B. K., Agrawal, H. C., Agrawal, D., andKalmbach, S. 1982. Development and maturation of central nervous system myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. Proc. Nat. Acad. Sci. USA. 79:4217–4220.

    PubMed  Google Scholar 

  26. Berry, M., andRogers, A. W. 1965. The migration of neuroblasts in the developing cerebral cortex. J. Anat. 99:691–709.

    PubMed  Google Scholar 

  27. Del Cerro, M. P., andSnyder, R. S. 1971. Studies on the developing cerebellum. II. The ultrastructure of the external granular layer. J. Comp. Neur. 144:131–164.

    Google Scholar 

  28. Rakic, P. 1972. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neuro. 145:61–84.

    Google Scholar 

  29. Rakic, P. 1981. Neuronal-glial interaction during brain development. Trends in Neuroscience. 4, 184–187.

    Google Scholar 

  30. Stewart, R. M., andRosenberg, R. N. 1979. Physiology of glia: Glial-neuronal interactions. International Rev. Neurobiol. 21:275–309.

    Google Scholar 

  31. Choi, B. H., andLapham, L. W. 1978. Radial glia in the human fetal cerebrum: A combination golgi, immunofluorescent and electron microscopic study. Brain Res. 148:295–311.

    PubMed  Google Scholar 

  32. Elfvin, L. G. 1961. Electron-microscopic investigation of filament structures in unmyelinated fibres of cat splenic nerve. J. Ultrastruct. Res. 5:51–64.

    PubMed  Google Scholar 

  33. Blümcke, S., andNiedorf, H. R. 1966. Electron microscope studies of Schwann cells during the Wallerian degeneration with special reference to the cytoplasmic filaments. Acta Neuropath. 6:46–60.

    PubMed  Google Scholar 

  34. Bignami, A., andDahl, D. 1977. Specificity of the glial fibrillary acidic protein for astroglia. J. Histochem. Cytochem. 25:466–469.

    PubMed  Google Scholar 

  35. Jessen, K. R., andMirsky, R. 1980. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature. 286:736–737.

    PubMed  Google Scholar 

  36. Yen, S-H., andFields, K. L. 1981. Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system. J. Cell Biol. 88:115–126.

    PubMed  Google Scholar 

  37. Eng, L. F., andDeArmond, S. J. 1983. Immunochemistry of the glial fibrillary acidic protein. Pages 19–39,in H. M. Zimmermann, (ed.), Progress in Neuropathology, Vol. 5. Raven Press, New York. 19–39.

    Google Scholar 

  38. Dahl, D., Chi, N. H., Miles, L. E., Nguyen, B. T., andBignami, A. 1982. Glial fibrillary acidic (GFA) protein in Schwann cells: Fact or artifact? J. Histochem. Cytochem. 30:912–918.

    PubMed  Google Scholar 

  39. Fields, K. L. 1983. Differentiated Schwann cells cultured from adult sciatic nerves contain astrocyte type intermediate filaments. Society for Neuroscience Abstracts. 9:5.

    Google Scholar 

  40. Jessen, K. R., Thorpe, R., andMirsky, R. 1984. Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. Jour. Neurocytol. 13:187–200.

    Google Scholar 

  41. Yen, S-H., andFields, K. L. 1983. Schwann cells contain a protein similar to the CNS astroglial filament protein. Society for Neuroscience Abstracts. 9:235.

    Google Scholar 

  42. Webster, H. deF., Martin, J. R., andO'Connell, M. F. 1973. The relationship between interphase Schwann cells and axons before myelination: A quantitative electron microscopic study. Dev. Biol. 32:401–416.

    PubMed  Google Scholar 

  43. Trapp, B. D., Itoyama, Y., Sternberger, N. H., Quarles, R. H., andWebster, H. deF. 1981. Immunocytochemical localization of Po protein in golgi complex membranes and myelin of developing rat Schwann cells. J. Cell Biol. 90:1–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noetzel, M.J., Agrawal, H.C. Immunoblot identification of glial fibrillary acidic protein in rat sciatic nerve, brain, and spinal cord during development. Neurochem Res 10, 737–753 (1985). https://doi.org/10.1007/BF00964532

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964532

Keywords

Navigation