Skip to main content
Log in

Function of fumarate reductase in methanogenic bacteria (Methanobacterium)

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanogenic bacteria contain high activities of fumarate reductase. An interesting hypothesis has recently been advanced that this enzyme, in cooperation with a succinate dehydrogenase, functions in a fumarate-succinate cycle for ATP synthesis. This hypothesis was tested by determining whether [2, 3-3H] succinate loses3H when taken up by growing cells.Methanobacterium thermoautotrophicum was grown on H2 plus CO2 in the presence of [U-14C, 2,3-3H] succinate. The double labelled dicarboxylic acid was found to be incorporated into cell material with the loss of only 30% of tritium. Neither was3H released into H2O in significant amounts. This finding excludes a catabolic oxidation of succinate to fumarate in the growing cells and thus the operation of a fumaratesuccinate cycle. It is shown that the function of fumarate reductase inM. thermoautotrophicum is to provide the cells with succinate for the synthesis of α-ketoglutarate, an intermediate in glutamate, arginine and proline synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, R.: Molecular assymetry in biology, Vol. II, pp. 57–67. New York-London: Academic Press 1970

    Google Scholar 

  • Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254 (1976)

    PubMed  Google Scholar 

  • Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem.1, 279–285 (1960)

    Google Scholar 

  • Fuchs, G., Stupperich, E.: Evidence for an incomplete reductive carboxylic acid cycle inMethanobacterium thermoautotrophicum. Arch. Microbiol.118, 121–125 (1978)

    PubMed  Google Scholar 

  • Fuchs, G., Stupperich, E., Thauer, R. K.: Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum. Arch. Microbiol.117, 61–66 (1978)

    PubMed  Google Scholar 

  • Gottschalk, G., Schoberth, S., Braun, K.: Energy metabolism of anaerobes growing on C1-compounds. Abstract of the symposium “Microbial growth on C1-compounds”, pp. 157–158, Scientific Center for Biological Research. Pushchino: USSR Academy of Sciences 1977

    Google Scholar 

  • Grossmann, J. P., Postgate, J. R.: The metabolism of malate and certain other compounds byDesulphovibrio desulphuricans. J. Gen. Microbiol.12, 429–445 (1955)

    PubMed  Google Scholar 

  • Hoare, D. S.: The photo-assimilation of acetate byRhodospirillum rubrum. Biochem. J.87, 284–301 (1963)

    PubMed  Google Scholar 

  • Hungate, R. W.: A roll tube method for cultivation of strict anaerobes. In: Methods in microbiology, Vol. 3B (J. R. Norris, D. W. Ribbons, eds.), pp. 117–132. New York: Academic Press 1969

    Google Scholar 

  • Krezdorn, E., Höcherl, S., Simon, H.: Preparation of (S) 2-methylsuccinate and (2S, 3S) [2,3-3H] 2-methylsuccinate by biohydrogenation of 2-methylfumarate. Hoppe-Seyler's Z. Physiol. Chem.358, 945–948 (1977)

    PubMed  Google Scholar 

  • Kröger, A.: The electron transport-coupled phosphorylation of the anaerobic bacteriumVibrio succinogenes. In: Electron transfer chains and oxidative phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slter, N. Siliprandi, eds.), pp. 265–270. Amsterdam: North-Holland 1975

    Google Scholar 

  • Kröger, A.: Determination of contents and redox state of ubiquinone and menaquinone. In: Methods in enzymology (S. P. Colowick, N. O. Kaplan, eds.). New York: Academic Press (in press)

  • Kröger, A.: Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: Microbial energetics (B. A. Haddock, W. A. Hamilton, eds.), pp. 61–93. Cambridge: Cambridge University Press 1977

    Google Scholar 

  • Kröger, A., Innerhofer, A.: The function of the b cytochromes in the electron transport from formate to fumarate ofVibrio succinogenes. Eur. J. Biochem.69, 497–506 (1976)

    Google Scholar 

  • Mah, R. A., Ward, D. M., Baresi, L., Glass, T. L.: Biogenesis of methane. Annu. Rev. Microbiol.31, 309–341 (1977)

    PubMed  Google Scholar 

  • Rétey, J., Seibl, J., Arigoni, D., Cornforth, J. W., Ryback, G., Zeylemaker, W. P., Veeger, C.: Stereochemical studies of the exchange and abstraction of succinate hydrogen on succinate dehydrogenase. Eur. J. Biochem.14, 232–242 (1970)

    PubMed  Google Scholar 

  • Roberton, A. M., Wolfe, R. S.: Adenosine triphosphate pools inMethanobacterium. J. Bacteriol.102, 43–51 (1970)

    PubMed  Google Scholar 

  • Simon, H., Floss, H. G.: Anwendung von Isotopen in der Organischen Chemie und Biochemie, Vol. 2, pp. 23ff, pp. 50ff, pp. 8–10. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  • Stegemann, H.: Bestimmung von Aminosäuren mit dithionitreduziertem Ninhydrin. Hoppe-Seyler's Z. Physiol. Chem.319, 102–109 (1960)

    Google Scholar 

  • Taylor, G. T.: The formation of methane by bacteria. Process Biochem. 29–33 (1975)

  • Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev.41, 100–180 (1977)

    PubMed  Google Scholar 

  • Wolfe, R. S.: Microbial formation of methane. Adv. Microbial Physiol.6, 107–146 (1971)

    Google Scholar 

  • Zeikus, J. G.: The biology of methanogenic bacteria. Bact. Rev.41, 514–541 (1977)

    PubMed  Google Scholar 

  • Zeikus, J. G., Fuchs, G., Kenealy, W., Thauer, R. K.: Oxidoreductases involved in cell carbon synthesis ofMethanobacterium thermoautotrophicum. J. Bacteriol.132, 604–613 (1977)

    PubMed  Google Scholar 

  • Zeikus, J. G., Wolfe, R. S.:Methanobacterium thermoautotrophicum sp. n., an anaerobic autotrophic extreme thermophile. J. Bacteriol.109, 707–713 (1972)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, G., Stupperich, E. & Thauer, R.K. Function of fumarate reductase in methanogenic bacteria (Methanobacterium). Arch. Microbiol. 119, 215–218 (1978). https://doi.org/10.1007/BF00964276

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964276

Key words

Navigation