Skip to main content
Log in

Reduction of Fumarate to Succinate Mediated by Fusobacterium varium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Accumulation of succinate as a fermentation product of Fusobacterium varium was enhanced when the anaerobic bacterium was grown on complex peptone medium supplemented with fumarate. Residual substrates and fermentation products were determined by proton NMR spectroscopy. Cells collected from the fumarate-supplemented medium (8–10 h after inoculation) supported the conversion of fumarate to succinate when suspended with fumarate and a co-substrate (glucose, sorbitol, or glycerol). Succinate production was limited by the availability of fumarate or reducing equivalents supplied by catabolism of a co-substrate via the Embden-Meyerhof-Parnas (EMP) pathway. The choice of reducing co-substrate influenced the yield of acetate and lactate as side products. High conversions of fumarate to succinate were achieved over pH 6.6–8.2 and initial fumarate concentrations up to 300 mM. However, at high substrate concentrations, intracellular retention of succinate reduced extracellular yields. Overall, the efficient utilization of fumarate (≤ 400 mM) combined with the significant extracellular accumulation of succinate (corresponding to ≥ 70% conversion) indicated the effective utilization of fumarate as a terminal electron acceptor by F. varium and the potential of the methodology for the bioproduction of succinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang, M., Ma, J., Wu, M., Liu, R., Liang, L., Xin, F., Zhang, W., Jia, H., & Dong, W. (2017). Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresource Technology, 245, 1710–1717.

    Article  CAS  Google Scholar 

  2. Mazière, A., Prinsen, P., García, A., Luque, R., & Len, C. (2017). A review of progress in (bio)catalytic routes from/to renewable succinic acid. Biofuels, Bioproducts & Biorefining, 11(5), 908–931.

    Article  Google Scholar 

  3. Ahn, J. H., Jang, Y.-S., & Lee, S. Y. (2016). Production of succinic acid by metabolically engineered microorganisms. Current Opinion in Biotechnology, 42, 54–66.

    Article  CAS  Google Scholar 

  4. Morales, M., Ataman, M., Badr, S., Linster, S., Kourlimpinis, I., Papadokonstantakis, S., Hatzimanikatis, V., & Hungerbühler, K. (2016). Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy & Environmental Science, 9(9), 2794–2805.

    Article  CAS  Google Scholar 

  5. Cao, Y., Zhang, R., Sun, C., Cheng, T., Liu, Y., & Xian, M. (2013). Fermentative succinate production: An emerging technology to replace the traditional petrochemical processes. BioMed Research International. Article ID 723412. https://doi.org/10.1155/2013/723412.

  6. Delhomme, C., Weuster-Botz, D., & Kühn, F. E. (2009). Succinic acid from renewable resources as a C4 building-block chemical—A review of the catalytic possibilities in aqueous media. Green Chemistry, 11(1), 13–26.

    Article  CAS  Google Scholar 

  7. Cukalovic, A., & Stevens, C. V. (2008). Feasibility of production methods for succinic acid derivatives: A marriage of renewable resources and chemical technology. Biofuels, Bioproducts & Biorefining, 2(6), 505–529.

    Article  CAS  Google Scholar 

  8. Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chemical Engineering & Technology, 31(5), 647–654.

    Article  CAS  Google Scholar 

  9. McKinlay, J. B., Vieille, C., & Zeikus, J. G. (2007). Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, 76(4), 727–740.

    Article  CAS  Google Scholar 

  10. Jansen, M. L. A., & van Gulik, W. M. (2014). Towards large scale fermentative production of succinic acid. Current Opinion in Biotechnology, 30, 190–197.

    Article  CAS  Google Scholar 

  11. Debabov, V. G. (2015). Prospects for biosuccinic acid production. Applied Biochemisty and Microbiology, 51(8), 787–791.

    Article  CAS  Google Scholar 

  12. Besson, M., Gallezot, P., & Pinel, C. (2014). Conversion of biomass into chemicals over metal catalysts. Chemical Reviews, 114(3), 1827−1870.

    Article  Google Scholar 

  13. Zhu, L.-W., & Tang, Y.-J. (2017). Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnology Advances, 35(8), 1040–1048.

    Article  CAS  Google Scholar 

  14. Beauprez, J. J., De Mey, M., & Soetaert, W. K. (2010). Microbial succinic acid production: Natural versus metabolic engineered producers. Process Biochemistry, 45(7), 1103–1114.

    Article  CAS  Google Scholar 

  15. Chen, Y., & Nielsen, J. (2016). Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology, 37, 165–172.

    Article  Google Scholar 

  16. Thakker, C., Martínez, I., San, K.-Y., & Bennett, G. N. (2012). Succinate production in Escherichia coli. Biotechnology Journal, 7(2), 213–224.

    Article  CAS  Google Scholar 

  17. Cheng, K.-K., Wang, G.-Y., Zeng, J., & Zhang, J.-A. (2013). Improved succinate production by metabolic engineering. BioMed Research International. Article ID 538790. https://doi.org/10.1155/2013/538790.

  18. Li, C., Yang, X., Gao, S., Wang, H., & Lin, C. S. K. (2017). High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica. Bioresource Technology, 225, 9–16.

    Article  CAS  Google Scholar 

  19. Ryu, H.-W., Kang, K.-H., & Yun, J.-S. (1999). Bioconversion of fumarate to succinate using glycerol as a carbon source. Applied Biochemistry and Biotechnology, 78(1–3), 511–520.

    Article  Google Scholar 

  20. Kang, K.-H., Yun, J.-S., & Ryu, H.-W. (2000). Effect of culture conditions on the production of succinate by Enterococcus faecalis RKY1. Journal of Microbiology and Biotechnology, 10(1), 1–7.

    CAS  Google Scholar 

  21. Ryu, H.-W., & Wee, Y.-J. (2001). Characterization of bioconversion of fumarate to succinate by alginate immobilized Enterococcus faecalis RKY1. Applied Biochemistry and Biotechnology, 91–93(1–9), 525–535.

    Article  Google Scholar 

  22. Wee, Y.-J., Yun, J.-S., Kang, K.-H., & Ryu, H.-W. (2002). Continuous production of succinic acid by a fumarate-reducing bacterium immobilized in a hollow-fiber bioreactor. Applied Biochemistry and Biotechnology, 98–100(1–9), 1093–1104.

    Article  Google Scholar 

  23. Resmer, K. L., & White, R. L. (2011). Metabolic footprinting of the anaerobic bacterium Fusobacterium varium using 1H NMR spectroscopy. Molecular BioSystems, 7(7), 2220–2227.

    Article  CAS  Google Scholar 

  24. Hofstad, T. (2006). The prokaryotes: A Handbook on the Biology of Bacteria. In S. Falkow, E. Rosenberg, & K.-H. Schleifer (Eds.), The genus Fusobacterium (Vol. 7, pp. 1016–1027). New York: Springer.

    Google Scholar 

  25. Ramezani, M., Resmer, K. L., & White, R. L. (2011). Glutamate racemization and catabolism in Fusobacterium varium. The FEBS Journal, 278(14), 2540–2551.

    Article  CAS  Google Scholar 

  26. Potrykus, J., White, R. L., & Bearne, S. L. (2008). Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium. Proteomics, 8(13), 2691–2703.

    Article  CAS  Google Scholar 

  27. Potrykus, J., Mahaney, B., White, R. L., & Bearne, S. L. (2007). Proteomic investigation of glucose metabolism in the butyrate-producing gut anaerobe Fusobacterium varium. Proteomics, 7(11), 1839–1853.

    Article  CAS  Google Scholar 

  28. Ramezani, M., & White, R. L. (2011). Enantioselective catabolism of racemic serine: Preparation of d-serine using whole cells of Fusobacterium nucleatum. Tetrahedron: Asymmetry, 22(13), 1473–1478.

    Article  CAS  Google Scholar 

  29. LeBlanc, L. M., Powers, S. W., Grossert, J. S., & White, R. L. (2016). Competing fragmentation processes of β-substituted propanoate ions upon collision-induced dissociation. Rapid Communications in Mass Spectrometry, 30(19), 2133–2144.

    Article  CAS  Google Scholar 

  30. Sekizuka, T., Ogasawara, Y., Ohkusa, T., & Kuroda, M. (2017). Characterization of Fusobacterium varium Fv113-g1 isolated from a patient with ulcerative colitis based on complete genome sequence and transcriptome analysis. PLoS One, 12(12), e0189319.

    Article  Google Scholar 

  31. F. varium genomes. Available from https://www.ncbi.nlm.nih.gov/protein/. Accessed 5 March 2018.

  32. Li, Q.-Z., Jiang, X.-L., Feng, X.-J., Wang, J.-M., Sun, C., Zhang, H.-B., Xian, M., & Liu, H.-Z. (2016). Recovery processes of organic acids from fermentation broths in the biomass-based industry. Journal of Microbiology and Biotechnology, 26(1), 1–8.

    Article  Google Scholar 

  33. Doelle, H. W. (1975). Bacterial metabolism (2nd ed.pp. 269–270). New York: Academic Press.

    Google Scholar 

  34. Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: A platform for renewable fuels and chemicals. Trends in Biotechnology, 31(1), 20–28.

    Article  CAS  Google Scholar 

  35. Khanna, S., Goyal, A., & Moholkar, V. S. (2012). Microbial conversion of glycerol: Present status and future prospects. Critical Reviews in Biotechnology, 32(3), 235–262.

    Article  CAS  Google Scholar 

  36. Lancaster, C. R. D. (2001). Succinate:Quinone oxidoreductases – What can we learn from Wolinella succinogenes quinol:Fumarate reductase? FEBS Letters, 504(3), 133–141.

    Article  CAS  Google Scholar 

  37. Chung, S.-C., Park, J.-S., Yun, J., & Park, J. H. (2017). Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metabolic Engineering, 40, 157–164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC grant RGPIN/04536-2014). NMR and mass spectra were collected on instruments provided by NMR-3 and the Mass Spectrometry Laboratory, respectively (Dalhousie University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. White.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

ESM 1

(DOCX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, N.C., White, R.L. Reduction of Fumarate to Succinate Mediated by Fusobacterium varium. Appl Biochem Biotechnol 187, 163–175 (2019). https://doi.org/10.1007/s12010-018-2817-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2817-0

Keywords

Navigation