Skip to main content
Log in

Oxygen metabolism by the anaerobic bacteriumVeillonella alcalescens

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Veillonella alcalescens contained a membrane-bound lactate oxidase system. Studies on the effect of inhibitors on lactate oxidase showed the participation of non-heme iron, quinone and cytochromesb andd. Superoxide anion radicals (\(O_2^{\bar \cdot } \)) and H2O2 were shown to be formed at lactate oxidation and presumably arose from cyanide- and azide-resistant side chains of the respiratory system. The →H+/O ratio withL-lactate as a hydrogen donor was 2.3. When an anaerobic culture growing on lactate was shifted to a high dissolved oxygen tension (d.o.t.=15 kPa) rapid inhibition of growth and lactate conversion occurred. This could be correlated with a rapid inactivation of lactate dehydrogenase. The effects of high d.o.t.'s on lactate dehydrogenase, lactate conversion and growth were reversible. After a shift to low d.o.t.'s (<2.5 kPa) growth ofV. alcalescens continued for one or two doublings whereafter lysis did occur. Acetate and pyruvate were the main fermentation products. P/O ratio's were calculated from molar growth yields and fermentation balances. A P/O value of 0.66 was found after a shift to a very low oxygen supply at which the d.o.t. presumably was zero. Shifts to higher d. o. t.'s gave much lower growth yields. Presumably, under these conditions uncoupling between growth and energy production occurred. Accumulation of toxic oxygen compounds was given as an explanation for the behaviour ofV. alcalescens at low d.o.t.'s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HQNO:

2-n-heptyl-4-hydroxy-quinoline-N-oxide

CCCP:

carbonyl cyanide m-chlorophenyl-hydrazone

ABTS:

2,2′-azino-di-3-ethyl-benzthiazoline sulfonate

DCPIP:

2,6 dichlorophenolindophenol

PMS:

phenazine methosulfate

NBT:

p-nitro blue tetrazolium chloride

d.o.t.:

dissolved oxygen tension

SOD:

superoxide dismutase

References

  • Aebi, H.: Katalase. In: Methoden der enzymatischen Analyse, Vol.I (H. U. Bergmeyer, ed.), pp. 636–641. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analyt. Biochem.44, 276–287 (1971)

    PubMed  Google Scholar 

  • Epel, B. L., Neumann, J.: The mechanism of the oxidation of ascorbate and Mn2+ by chloroplasts. The role of the radical superoxide. Biochim. Biophys. Acta325, 520–529 (1973)

    PubMed  Google Scholar 

  • Van Gent-Ruyters, M. L. W., de Meyere, F. A., de Vries, W., Stouthamer, A. H.: Lactate metabolism inPropionibacterium pentosaceum growing with nitrate or oxygen as hydrogen acceptor. Antonie van Leeuwenhoek. Z. Microbiol. Serol.42, 217–228 (1976)

    Google Scholar 

  • Guidotti, G., Colombo, J., Foa, P. O.: Enzymic determination of glucose: stabilization of color developped by dianisidine. Anal. Chem.33, 151–153 (1961)

    Google Scholar 

  • Heinen, W.: Inhibitors of electron transport and oxidative phosphorylation. In: Methods in microbiology, Vol. 6A (J. R. Norris, D. W. Ribbons eds.), pp. 383–393 London-New York: Academic Press 1971

    Google Scholar 

  • Jones, C. W., Redfearn, E. R.: The cytochrome system ofAzotobacter vinelandii. Biochim. Biophys. Acta143, 340–353 (1967)

    PubMed  Google Scholar 

  • Jones, R. W., Garland, P. B.: Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes ofEscherichia coli. Biochem. J.164, 199–211 (1977)

    PubMed  Google Scholar 

  • Johnston, M. A., Delwiche, E. A.: Distribution and characteristics of catalases of Lactobacillaceae. J. Bacteriol.90, 347–351 (1965)

    PubMed  Google Scholar 

  • Kröger, A., Dadak, V.: On the role of quinones in bacterial electron transport. The respiratory system ofBacillus megaterium. Eur. J. Biochem.11, 328–340 (1969)

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)

    PubMed  Google Scholar 

  • McCord, J. M., Keele, B. B., Fridovich, J.: An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc. Nat. Acad. Sci. U.S.A.68, 1024–1027 (1971)

    Google Scholar 

  • Meyer, E. M., van Verseyeld, H. W., van der Beek, E. G., Stouthamer, A. H.: Ehergy conservation during aerobic growth inParacoccus denitrificans. Arch. Microbiol.112, 25–34 (1977)

    PubMed  Google Scholar 

  • Morris, J. G.: The physiology of obligate anaerobiosis. In: Advances in microbial physiology, Vol. 12 (A. H. Rose, D. W. Tempest, eds.), pp. 169–246. London-New York-San Francisco: Academic Press 1975

    Google Scholar 

  • Niekus, H. G. D., de Vries, W., Stouthamer, A. H.: The effect of different dissolved oxygen tensions on growth and enzyme activities ofCampylobacter sputorum subspeciesbubulus. J. Gen. Microbiol.103, 215–222 (1977)

    PubMed  Google Scholar 

  • Niekus, H. G. D., Wouters, C. H., de Vries, W., Stouthamer, A. H.: Superoxide dismutase and hydrogen peroxide formation inCampylobacter sputorum subspeciesbubulus. Arch. Microbiol.119, 37–42 (1978)

    PubMed  Google Scholar 

  • Pritchard, G. G., Wimpenny, J. W. T., Morris, H. A., Lewis, M. W. A., Hughes, D. E.: Effects of oxygen onPropionibacterium shermanii grown in continuous culture. J. Gen. Microbiol.102, 223–233 (1977)

    PubMed  Google Scholar 

  • Ruoff, K. L., Delwiche, E. A.: Nitrate-reductase electron-transport cofactors inVeillonella alcalescens. Can. J. Microbiol.23, 1562–1567 (1977)

    PubMed  Google Scholar 

  • Scholes, P., Mitchell, P.: Respiration-driven proton translocation inMicrococcus denitrificans. J. Bioenerg.1, 309–323 (1970)

    Google Scholar 

  • Senez, J. C.: Some considerations on the energetics of bacterial growth. Bacteriol. Rev.26, 95–107 (1962)

    PubMed  Google Scholar 

  • Stouthamer, A. H.: Energetic aspects of the growth of microorganisms. In: Microbial energetics. Symposium 27 of the Society for General Microbiology (B. A. Haddock, W. A. Hamilton, eds.). pp. 285–315, London-New York-Melbourne: Cambridge University Press 1977

    Google Scholar 

  • De Vries, W., Rietveld-Struyk, T. R. M., Stouthamer, A. H.: ATP formation associated with fumarate and nitrate reduction in growing cultures ofVeillonella alcalescens. Antonie van Leeuwenhoek. Z. Microbiol. Serol.43, 153–167 (1977)

    Google Scholar 

  • De Vries, W., van Wijck-Kapteyn, W. M. C., Oosterhuis, S. K. H.: The presence and function of cytochromes inSelenomonas ruminantium, Anaerovibrio lipolytica andVeillonella alcalescens. J. Gen. Microbiol.81, 69–78 (1974)

    PubMed  Google Scholar 

  • De Vries, W., van Wijck-Kapteyn, W. M. C., Stouthamer, A. H.: Influence of oxygen on growth, cytochrome synthesis and fermentation pattern in propionic acid bacteria. J. Gen. Microbiol.71, 515–524 (1972)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, W., Donkers, C., Boellaard, M. et al. Oxygen metabolism by the anaerobic bacteriumVeillonella alcalescens . Arch. Microbiol. 119, 167–174 (1978). https://doi.org/10.1007/BF00964269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964269

Key words

Navigation