Skip to main content
Log in

Origin of axoplasmic RNA in the squid giant fiber

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The origin of axoplasmic RNA in the squid giant fiber was investigated after exposure of the giant axon or of the giant fiber lobe to [3H]uridine. The occurrence of a local process of synthesis was indicated by the accumulation of labeled axoplasmic RNA in isolated axons incubated with the radioactive precursor. Similar results were obtained in vivo after injection of [3H]uridine near the stellate nerve at a sizable distance from the ganglion. Exposure of the giant fiber lobe to [3H]uridine under in vivo and in vitro conditions was followed by the appearance of labeled RNA in the axoplasm and in the axonal sheath. While the latter process is attributed to incorporation of precursor by sheath cells, a sizable fraction of the radioactive RNA accumulating in the axoplasm is likely to originate from neuronal perikarya by a process of axonal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lasek, R.J., Dabrowski, C., andNordlander, R. 1973. Analysis of axoplasmic RNA from invertebrate giant axons. Nature, Lond. 244:162–165.

    Google Scholar 

  2. Black, M. M., andLasek, R. J. 1977. The presence of transfer RNA in the axoplasm of the squid giant axon. J. Neurobiol. 8:229–237.

    Google Scholar 

  3. Giuditta, A., Cupello, A., andLazzarini, G. 1980. Ribosomal RNA in the axoplasm of the squid giant axon. J. Neurochem. 34:1757–1760.

    Google Scholar 

  4. Koenig, E. 1979. Ribosomal RNA in Mauthner axon: implications for a protein synthesizing machinery in the myelinated axon. Brain Res. 174:95–107.

    Google Scholar 

  5. Fischer, S., andLitvak, S. 1967. The incorporation of micro injected14C-aminoacids into TCA-insoluble fractions of the giant axon of the squid. J. Cell Physiol. 70:69–74.

    Google Scholar 

  6. Giuditta, A., Dettbarn, W. D., andBrzin, M. 1968. Protein synthesis in the isolated giant axon of the squid. Proc. Natl. Acad. Sci. USA. 59:1284–1287.

    Google Scholar 

  7. Lasek, R. J., Gainer, H., andPrzybylski, R. J. 1974. Transfer of newly synthesized proteins from Schwann cells to the squid giant axon. Proc. Natl. Acad. Sci. USA. 71:1188–1192.

    Google Scholar 

  8. Alemà, S., andGiuditta, A. 1976. Site of biosynthesis of brain-specific proteins in the giant fibre system of the squid. J. Neurochem. 26:995–999.

    Google Scholar 

  9. Lasek, R. J., Gainer, H., andBarker, J. I. 1977. Cell-to-cell transfer of glial proteins to the squid giant axon. The glia-neuron protein transfer hypothesis. J. Cell. Biol. 74:501–523.

    Google Scholar 

  10. Gainer, H., Tasaki, I., andLasek, R. J. 1977. Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J. Cell Biol. 74:524–530.

    Google Scholar 

  11. Giuditta, A., Metafora, S., Felsani, A., andDel Rio, A. 1977. Factors for protein synthesis in the axoplasm of squid giant axons. J. Neurochem. 28:1393–1395.

    Google Scholar 

  12. Giuditta, A. 1980. Origin of axoplasmic protein in the squid giant axon. Rivista di Biologia 73:35–49.

    Google Scholar 

  13. Giuditta, A., Alemà, S., Metafora, S., Cutillo, V., Montagnese, P., Cupello, A., andRapallino, M. V. 1982. Synthesis of axoplasmic RNA and proteins in the giant axon of the squid. Pages 137–147,in Bayev, A. A. (ed.) Macromolecules in the Functioning Cell. Nauka, Moskow.

    Google Scholar 

  14. Barra, H. S., Rodriguèz, J. A., Arce, C. A., andCaputto, R. 1973. A soluble preparation from rat brain that incorporates into its own proteins14C-arginine by a ribonuclease-sensitive system and14C-tyrosine by a ribonuclease-insensitive system. J. Neurochem. 20:97–108.

    Google Scholar 

  15. Soffer, R. L. 1980. Biochemistry and biology of aminoacyl-tRNA protein transferase. Cold Spring Harbor Symposium, No. 913:493–505.

    Google Scholar 

  16. Laughrea, M. 1982. Trasfer ribonucleic acid dependent but ribosome-independent leucine incorporation into rat brain protein. Biochem. 21:5694–5700.

    Google Scholar 

  17. Miani, N., Di Girolamo, A., andDi Girolamo, M. 1966. Sedimentation characteristics of axonal RNA in rabbit. J. Neurochem. 13:755–759.

    Google Scholar 

  18. Bray, J. J., andAustin, L. 1968. Flow of protein and ribonucleic acid in peripheral nerve. J. Neurochem. 15:731–740.

    Google Scholar 

  19. Casola, L., Davis, G. A., andDavis, R. E. 1969. Evidence for RNA transport in rat optic nerve. J. Neurochem. 16:1037–1041.

    Google Scholar 

  20. Rahmann, H., andWolburg, H. 1971. Intraaxonaler Transport von3H-Uridin-Verbindungen in Tractus opticus von Teleoster. Experientia 27:903–904.

    Google Scholar 

  21. Gambetti, P., Autilio-Gambetti, L., Shafer, B., andPfaff, L. 1973. Quantitative autoradiographic study of labeled RNA in rabbit optic nerve after intraocular injection of3H-uridine. J. Cell Biol. 59:677–684.

    Google Scholar 

  22. Jarlstedt, J., andKarlsson, J. O. 1973. Evidence for axonal transport of RNA in mammalian neurons. Exp. Brain Res. 16:501–506.

    Google Scholar 

  23. Bondy, S. C., andPurdy, J. L. 1975. Migration of ribosomes along the axons of the chick visual pathway. Biochim. Biophys. Acta 390:332–341.

    Google Scholar 

  24. Grafstein, B. andForman, D. S. 1980. Intracellular transport in neurons. Physiol. Rev. 60:1167–1283.

    Google Scholar 

  25. Autilio-Gambetti, L., Gambetti, P., andShafer, B. 1973. RNA and axonal flow. Biochemical and autoradiographic study in the rabbit optic system. Brain Res. 53:387–398.

    Google Scholar 

  26. Ingoglia, N. A. andTuliszewski, R. 1976. Transfer RNA may be axonally transported during regeneration of goldfish optic nerves. Brain Res. 112:371–381.

    Google Scholar 

  27. Ingoglia, N. A. 1978. The effect of intraocular injection of cordycepin on retinal RNA synthesis and on RNA axonally transported during regeneration of the optic nerves of goldfish. J. Neurochem. 30:1029–1039.

    Google Scholar 

  28. Gambetti, P., Ingoglia, N. A., Autilio-Gambetti, L., andWeis, P. 1978. Distribution of [3H] RNA in goldfish optic tectum following intraocular or intracranial injection of [3H] uridine. Evidence of axonal migration of RNA in regenerating optic fibers. Brain Res. 154:285–300.

    Google Scholar 

  29. Ingoglia, N. A. 1979. 4S RNA is present in regenerating optic axons of goldfish. Science 206:73–75.

    Google Scholar 

  30. Gunning, P. W., Por, S. B., Langford, C. J., Scheffer, J., Austin, L. andJeffrey, P. L. 1979. The direct measurement of the axoplasmic transport of individual RNA species: transfer but not ribosomal RNA is transported. J. Neurochem. 32:1737–1743.

    Google Scholar 

  31. Koenig, E. 1967. Synthetic mechanisms in the axon-IV. In vitro incorporation of [3H] precursors into axonal protein and RNA. J. Neurochem. 14:437–446.

    Google Scholar 

  32. Singer, M., andGreen, M. R. 1968. Autoradiographic study of uridine incorporation in peripheral nerve of the newt, Triturus. J. Morph. 124:321–344.

    Google Scholar 

  33. Edström, A., Edström, J.-E., andHökfelt, T. 1969. Sedimentation analysis of ribonucleic acid extracted from isolated Mauthner nerve fibre components. J. Neurochem. 16:53–66.

    Google Scholar 

  34. Fischer, S., Gariglio, P., andTarifeño, E. 1969. Incorporation of3H-uridine and the isolation and characterization of RNA from squid axon. J. Cell Physiol. 74:155–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutillo, V., Montagnese, P., Gremo, F. et al. Origin of axoplasmic RNA in the squid giant fiber. Neurochem Res 8, 1621–1634 (1983). https://doi.org/10.1007/BF00964163

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964163

Keywords

Navigation