Skip to main content
Log in

Inorganic-carbon transport in some marine eukaryotic microalgae

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Inorganic-carbon transport was investigated in the eukaryotic marine microalgaeStichococcus minor, Nannochloropsis oculata and aMonallantus sp. Photosynthetic O2 evolution at constant inorganic-carbon concentration but varying pH showed thatS. minor had a greater capacity for CO2 rather than HCO 3 utilization but forN. oculata andMonallantus HCO 3 was the preferred source of inorganic carbon. All three microalgae had a low affinity for CO2 as shown by the measurement of inorganic-carbon-dependent photosynthetic O2 evolution at pH 5.0. At pH 8.3, where HCO 3 is the predominant form of inorganic carbon, the concentration of inorganic carbon required for half-maximal rate of photosynthetic O2 evolution [K 0.5 (CO2)] was 53 μM forMonallantus sp. and 125 μM forN. oculata, values compatible with HCO 3 transport. Neither extra- nor intracellular carbonic anhydrase was detected in these three microalgal species. It is concluded that these microalgae lack a specific transport system for CO2 but that HCO 3 transport occurs inN. oculata andMonallantus, and in the absence of intracellular carbonic anhydrase the conversion of HCO 3 to CO2 may be facilitated by the internal pH of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badger, M.R., Kaplan, A., Berry, J.A. (1980) Internal inorganic carbon pool ofChlamydomonas reinhardtii. Evidence for a carbon dioxide concentrating mechanism. Plant Physiol.66, 407–443

    Google Scholar 

  • Beardall, J., Raven, J.A. (1981) Transport of inorganic carbon and the “CO2 concentrating mechanism” inChlorella emersonii (Chlorophyceae). J. Phycol.17, 134–141

    Google Scholar 

  • Berry, J.A., Boynton, J., Kaplan, A., Badger, M.R. (1976) Growth and photosynthesis ofChlamydomonas reinhardtii as a function of CO2 concentration. Carnegie Inst. Washington Yearb.75, 423–433

    Google Scholar 

  • Coleman, J.R., Berry, J.A., Togasaki, R.K., Grossman, R.A. (1984) Identification of extracellular carbonic anhydrase ofChlamydomonas reinhardtii. Plant Physiol.76, 472–477

    Google Scholar 

  • Colman, B., Gehl, K.A. (1983) Physiological characteristics of photosynthesis inPorphyridium cruentum: evidence for bicarbonate transport in a unicellular red alga. J. Phycol.19, 216–219

    Google Scholar 

  • Cook, C.M., Lanaras, T., Colman, B. (1986) Evidence for bicarbonate transport in species of Red and Brown macrophytic marine algae. J. Exp. Bot.180, 977–984

    Google Scholar 

  • Dixon, G.K., Merrett, M.J. (1988) Bicarbonate utilization by the marine diatomPhaeodactylum tricornutum Bohlin. New Phytol.109, 47–51

    Google Scholar 

  • Dixon, G.K., Patel, B.N., Merrett, M.J. (1987) Role of intracellular carbonic anhydrase in inorganic-carbon assimilation byPorphyridium purpureum. Planta172, 508–513

    Google Scholar 

  • Dixon, G.K., Brownlee, C., Merrett, M.J. (1989) Measurement of internal pH in the coccolithophoreEmiliania huxleyi using 2′,7′-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein acetoxymethylester and digital imaging microscopy. Planta178, 443–449

    Google Scholar 

  • Findenegg, G.R. (1976) Correlations between the accessibility of carbonic anhydrase for external substrate and regulation of photosynthetic use of CO2 and HCO 3 byScenedesmus obliquus. Z. Pflanzenphysiol.79, 428–437

    Google Scholar 

  • Haldane, J.B.S., Stern, K.G. (1932) Allgemeine Chemie der Enzyme. Steinkopff Verlag, Dresden Leipzig

    Google Scholar 

  • Hartree, E.F. (1972) A modification of the Lowry method that gives a linear photometric response. Anal. Biochem.48, 422–427

    Google Scholar 

  • Hogetsu, D., Miyachi, S. (1977) Effects of CO2 concentration during growth on subsequent photosynthetic CO2 fixation inChlorella. Plant Cell Physiol.18, 347–352

    Google Scholar 

  • Imamura, M., Tsuzuki, M., Shiraiwa, Y., Miyachi, S. (1983) Form of inorganic carbon utilized for photosynthesis inChlamydomonas reinhardtii. Plant Cell Physiol24, 533–540

    Google Scholar 

  • Kimpel, D.L., Togasaki, R.K., Miyachi, S. (1983) Carbonic anhydrase inChlamydomonas reinhardtii. 1. Localization. Plant Cell Physiol.24, 255–259

    Google Scholar 

  • Moroney, J.V., Tolbert, N.E. (1985) Inorganic carbon uptake byChlamydomonas reinhardtii. Plant Physiol.77, 253–258

    Google Scholar 

  • Moroney, J.V., Husic, H.D., Tolbert, N.E. (1985) Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation byChlamydomonas reinhardtii. Plant Physiol.73, 177–183

    Google Scholar 

  • Moroney, J.V., Togasaki, R.K., Husic, H.D., Tolbert, N.E. (1987) Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grownChlamydomonas. Plant Physiol.84, 757–761

    Google Scholar 

  • Munoz, J., Merrett, M.J. (1988) Inorganic-carbon uptake by a small-celled strain ofStichococcus bacillaris. Planta175, 460–464

    Google Scholar 

  • Nelson, E.R., Cenedella, A., Tolbert, N.E. (1969) Carbonic anhydrase levels inChlamydomonas. Phytochemistry8, 2305–2305

    Google Scholar 

  • Patel, B.N., Merrett, M.J. (1986a) Regulation of carbonic anhydrase activity, inorganic carbon uptake and photosynthetic biomass yield inChlamydomonas reinhardtii. Planta169, 81–86

    Google Scholar 

  • Patel, B.N., Merrett, M.J. (1986b) Inorganic carbon uptake by the marine diatomPhaeodactylum tricornutum. Planta169, 222–227

    Google Scholar 

  • Provasoli, L., McLaughlin, J.J.A., Droop, M.R. (1957) The development of artificial media for marine algae. Arch. Mikrobiol.25, 392–428

    Google Scholar 

  • Rees, T.A.V. (1984) Sodium dependent photosynthetic oxygen evolution in a marine diatom. J. Exp. Bot.35, 332–227

    Google Scholar 

  • Skirrow, G. (1985) The dissolved gases — carbon dioxide. In: Chemical oceanography, pp. 1–181, Riley, J.P., Skirrow, G., eds. Academic Press, London New York

    Google Scholar 

  • Spalding, M.H., Ogren, W.L. (1983) Evidence for a saturable transport component in the inorganic carbon uptake ofChlamydomonas reinhardtii. FEBS Lett.154, 335–338

    Google Scholar 

  • Tsuzuki, M. (1983) Mode of HCO 3 utilization by the cells ofChlamydomonas reinhardtii grown under ordinary air. Z. Pflanzenphysiol.110, 29–37

    Google Scholar 

  • Wilbur, K.M., Anderson, N.G. (1948) Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem.176, 147–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munoz, J., Merrett, M.J. Inorganic-carbon transport in some marine eukaryotic microalgae. Planta 178, 450–455 (1989). https://doi.org/10.1007/BF00963814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963814

Key words

Navigation