Skip to main content
Log in

Total synthesis of acetyl coenzyme a involved in autotrophic CO2 fixation inAcetobacterium woodii

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The Gram positive anaerobeAcetobacterium woodii is able to grow autotrophically with a mixture of H2 and CO2 as the energy and carbon source. The question, by which pathway CO2 is assimilated, was studied using long term isotope labeling.

Autotrophically growing cultures produced acetate parallel to cell proliferation, and, when U-[14C]acetate was present as tracer, incorporated radioactivity into all cell fractions. The specific radioactivity and the label positions were determined for those representative cell compounds which biosynthetically originated directly from acetyl CoA (N-acetyl groups), pyruvate (alanine), oxaloacetate (aspartate), α-ketoglutarate (glutamate), and hexosephosphates (glucosamine). Per mol compound the same amount of labeled acetate was incorporated into N-acetyl groups, alanine (C-2, C-3), aspartate (C-2, C-3), and twice the amount into glutamate (C-2, C-3, C-4, C-5) and into glucosamine. Consequently, the unlabeled carbon atoms of the C3−C6 compounds must have been derived from CO2 by carboxylation subsequent to acetyl CoA synthesis. When 0.2 mM 2-[14C]pyruvate was added to autotrophically growing cultures, also a substantial amount of radioactivity was incorporated. Two important differences in comparison to the acetate experiment were observed: The N-acetyl groups were almost unlabeled and glutamate contained the same specific radioactivity as alanine or aspartate.

These data showed that acetyl CoA is the central intermediate for biosynthesis and excluded the operation of the Calvin cycle inA. woodii. The results were consistent with the operation of a different autotrophic CO2 fixation pathway in which CO2 is converted into acetyl CoA by total synthesis via methyltetrahydrofolate; acetyl CoA is then further reductively carboxylated to pyruvate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bache R, Pfennig N (1981) Selective isolation ofAcetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261

    Google Scholar 

  • Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977)Acetobacterium, a new genus of hydrogen-oxidizing, carbon-dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361

    Google Scholar 

  • Bergmeyer HU, Möllering H (1974) Acetat-Bestimmung mit vorgeschalteter Indikatorreaktion. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol 2. Verlag Chemie, Weinheim, pp. 1571–1572

    Google Scholar 

  • Bernstein IA, Wood HG (1957) Determination of isotopic carbon patterns in carbohydrate by bacterial fermentation. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 4. Academic Press, New York, p 580

    Google Scholar 

  • Bernt E, Gutmann I (1974) Ethanol-Bestimmung mit Alkohol-Dehydrogenase und DAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol 2. Verlag Chemie, Weinheim, pp 1545–1548

    Google Scholar 

  • Braun K (1979) Untersuchungen zum autotrophen, heterotrophen und mixotrophen Wachstum vonAcetobacterium woodii undClostridium aceticum. Doctoral thesis. University of Göttingen

  • Braun K, Gottschalk G (1981) Effect of molecular hydrogen and carbon dioxide on chemo-organic growth ofAcetobacterium woodii andClostridium aceticum. Arch Microbiol 128:294–298

    Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981)Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    Google Scholar 

  • Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of14CO2 and14CH3OH incorporated into whole cells. J Bacteriol 136:75–84

    Google Scholar 

  • Decker K (1959) Die aktivierte Essigsäure. Enke Verlag, Stuttgart, pp 81 ff.

    Google Scholar 

  • Diekert G, Ritter M (1982) Nickel requirement ofAcetobacterium woodii. J Bacteriol 151:1043–1045

    Google Scholar 

  • Diekert G, Thauer RK (1978) Carbon monoxide oxidation byClostridium thermoaceticum andClostridium formicoaceticum. J Bacteriol 136:597–606

    Google Scholar 

  • Dorn M, Andreesen JR, Gottschalk G (1978) Fumarate reductase ofClostridium formicoaceticum. Arch Microbiol 119:7–11

    Google Scholar 

  • Drake HL, Hu SI, Wood HG (1981) Punfication of five components fromClostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J Biol Chem 256: 11137–11144

    Google Scholar 

  • Eyzaguirre J, Jansen K, Fuchs G (1982) Phosphoenolpyruvate synthetase inMethanobacterium thermoautotrophicum. Arch Microbiol 132: 67–74

    Google Scholar 

  • Fischer F, Lieske R, Winzer K (1932) Über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan. Biochem Z 245:2–12

    Google Scholar 

  • Fontaine F, Peterson WH, McCoy E, Johnson GJ (1942) A new type of glucose fermentation byClostridium thermoaceticum, n sp J Bacteriol 43:701–715

    Google Scholar 

  • Fuchs G, Stupperich E (1978) Evidence for an incomplete reductive carboxylic acid cycle inMethanobacterium thermoautotrophicum. Arch Microbiol 118:121–125

    Google Scholar 

  • Fuchs G, Stupperich E (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation inMethanobacterium thermoautotrophicum. Arch Microbiol 127:267–272

    Google Scholar 

  • Fuchs G, Stupperich E (1982) Autotrophic CO2 fixation pathway inMethanobacterium thermoautotrophicum. Zbl Bakt Hyg I. Abt Orig C 3:277–288

    Google Scholar 

  • Fuchs G, Stupperich E, Eden G, (1980a) Autotrophic CO2 fixation inChlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Google Scholar 

  • Fuchs G, Stupperich E, Jaenchen R (1980b) Autotrophic CO2 fixation inChlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch Microbiol 128:56–63

    Google Scholar 

  • Gawehn K, Bergmeyer HU (1974)D-(-)Lactat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol 2. Verlag Chemie, Weinheim, pp 1538–1541

    Google Scholar 

  • Genthner BRS, Bryant MP (1982) Growth ofEubacterium limosum with carbon monoxide as the energy source. Appl Environmental Microbiol 43:70–74

    Google Scholar 

  • Gottschalk G (1968) The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Eur J Biochem 5: 346–351

    Google Scholar 

  • Grassl M (1974) Alaninbestimmung mit Glutamat-Pyruvat-Transaminase und Lactat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, Vol 2. Verlag Chemie, Weinheim, pp 1727–1730

    Google Scholar 

  • Gutmann I, Wahlefeld AW (1974)L-(+)Lactat. Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1510–1514

    Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 5B. Academic Press, London, New York, pp 209–344

    Google Scholar 

  • Herrmann WA (1982) Metallorganische Aspekte der Fischer-Tropsch-Synthese. Angew Chem 94:118–131

    Google Scholar 

  • Hu SI, Drake HL, Wood HG (1982) Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes fromClostridium thermoaceticum. J Bacteriol 149:440–448

    Google Scholar 

  • Jansen K, Stupperich E, Fuchs G (1982) Carbohydrate synthesis from acetyl CoA in the autotrophMethanobacterium thermoautotrophicum. Arch Microbiol (in press)

  • Kandler O, König H (1978) Chemical composition of the peptidoglycanfree cell walls of methanogenic bacteria. Arch Microbiol 118:141–152

    Google Scholar 

  • Kandler O, Schoberth S (1979) Murein structure ofAcetobacterium woodii. Arch Microbiol 120:181–183

    Google Scholar 

  • Linke HAB (1969) CO2-Fixierung durchClostridium aceticum:14CO2-Kurzzeiteinbau und Pyruvatstoffwechsel. Arch Microbiol 64:203–214

    Google Scholar 

  • Ljungdahl LG, Wood HA (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann Rev Microbiol 23:515–538

    Google Scholar 

  • Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogenButyribacterium methylotrophicum. J Bacteriol 149:255–263

    Google Scholar 

  • Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate inMethanobacterium thermoautotrophicum. Arch Microbiol 128:248–252

    Google Scholar 

  • Roberts RB, Abelson PH, Cowie DB, Bolton ET, Britton RF (1957) Studies of biosynthesis inEscherichia coli. Carnegie Institute, Washington

    Google Scholar 

  • Simon H, Floss HG (1967) Anwendung von Isotopen in der organischen Chemie und Biochemie, Vol 2. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Stadtman T (1971) Vitamin B12. Science 171:859–867

    Google Scholar 

  • Stegemann H (1960) Bestimmung von Aminosäuren mit dithionitreduziertem Ninhydrin. Hoppe-Seyler's Z Physiol Chem 319:102–109

    Google Scholar 

  • Stupperich E, Fuchs G (1981) Products of CO2 fixation and14C labeling pattern of alanine inMethanobacterium thermoautotrophicum pulselabeled with14CO2. Arch Microbiol 130:294–300

    Google Scholar 

  • Tanner RS, Stackebrandt E, Fox GE, Woese CR (1981) A phylogenetic analysis ofAcetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, andEubacterium tenue. Curr Microbiol 5:35–38

    Google Scholar 

  • Tanner RS, Wolfe RS, Ljungdahl LG (1978) Tetrahydrofolate enzyme levels inAcetobacterium woodii and their implication in the synthesis of acetate from CO2. J Bacteriol 134:668–670

    Google Scholar 

  • Taylor GT, Kelly DP, Pirt SJ (1976) Intermediary metabolism in methanogenic bacteria. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Proceedings of the Symposium “Microbial production and utilization of gases (H2, CH4, CO)”. Akademie der Wissenschaften zu Göttingen, E Goltze Verlag, Göttingen, pp 173–180

    Google Scholar 

  • Thauer RK, Diekert G, Schönheit P (1980) Biological role of nickel. Trends Bioch Sci 5:304–306

    Google Scholar 

  • Wiegel J, Braun M, Gottschalk G (1981)Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260

    Google Scholar 

  • Wieringa KT (1940) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie van Leeuwenhoek 7. Microbiol Serol 6:251–162

    Google Scholar 

  • Wood HG, Utter MF (1965) The role of CO2 fixation in metabolism. In: Campbell PN, Greville GD (eds) Essays in biochemistry, vol 1. Academic Press, New York, London, pp 1–27

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis ofMethanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eden, G., Fuchs, G. Total synthesis of acetyl coenzyme a involved in autotrophic CO2 fixation inAcetobacterium woodii . Arch. Microbiol. 133, 66–74 (1982). https://doi.org/10.1007/BF00943772

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00943772

Key words

Navigation