Skip to main content
Log in

High-temperature operation of AlGaInAs/InP lasers1994

  • Laser Diodes
  • Invited Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We discuss the design of uncooled lasers which minimizes the change in both threshold current and slope efficiency over the temperature range from−40 to +85°C [1]. To prevent carrier overflow under high-temperature operation, the electron confinement energy is increased by using the Al x Ga y In1−x−y As/InP material system [1] instead of the conventional Ga x In1−x As y P1−y /InP material system. Experimentally, we have investigated strained quantum well lasers with three different barrier layers and confirmed that the static and dynamical performance of the lasers with insufficient carrier confinement degrades severely under high-temperature operation [2]. With an optimized barrier layer, the Al x Ga y In1−x−y As/InP strained quantum well lasers show superior hightemperature performance, such as a small drop of 0.3 dB in slope efficiency when the heat sink temperature changes from 25 to 100°C [3], a maximum CW operation temperature of 185°C [4], a thermally-limited 3-dB bandwidth of 13.9 GHz at 85°C [2], and a mean-time-to-failure of 33 years at 100°C and 10 mW output power [5].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Zah, R. Bhat, B. Pathak et al.,IEEE J. Quantum Electron. QE-30 (1994) 511.

    Google Scholar 

  2. C. E. Zah, M. C. Wang, R. Bhat et al., Proc. 14th IEEE Int. Semiconductor Laser Conference, 1994, p. 215.

  3. C. E. Zah, R. Bhat, B. Pathak et al., Tech. Dig. Optical Fiber Communication, San Jose, CA, USA, 1994, p. 204.

  4. Z. Wang, D. B. Darby, G. Pinelli et al., Tech. Dig. Optical Fiber Communication, San Jose, CA, USA, 1994, p. 144.

  5. CE. Zah, R. Bhat, T. P. Lee et al., Tech. Dig. Optical Fiber Communication, San Diego, CA, USA, 1995, p. 251.

  6. Anon., Reliability assurance practices for optoelectronic devices in loop applications, Bellcore, TA-TSY-000983, Issue 1 (1990).

  7. G. P. Agrawal andN. K. Dutta,Long-wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).

    Google Scholar 

  8. A. R. Adams,Electron. Lett. 22 (1986) 249.

    Google Scholar 

  9. E. Yablonovitch andE. O. Kane,J. Lightwave Technol. 6 (1988) 1292.

    Google Scholar 

  10. A. Mircea, A. Ougazzaden, G. Primot andC. Kazmierski,J. Crystal Growth 124 (1992) 737.

    Google Scholar 

  11. M. Yamamoto, N. Yamamoto andJ. Nakano,IEEE J. Quantum Electron. QE-30 (1994) 3.

    Google Scholar 

  12. H. Shoji, T. Uchida, T. Kusunoki et al.,IEEE Photon. Technol. Lett. 6 (1994) 1170.

    Google Scholar 

  13. A. J. Moseley, J. Thompson, D. J. Robbins andM. Q. Kearley,Electron. Lett. 25 (1989) 1717.

    Google Scholar 

  14. M. J. Mondry, D. I. Babic, J. E. Bowers andL. A. Coldren,IEEE Photon. Technol. Lett. 4 (1992) 627.

    Google Scholar 

  15. K. Uomi, S. Sasaki, T. Tsuchiya, H. Nakano andN. Chinone,IEEE Photon. Technol. Lett. 2 (1990) 229.

    Google Scholar 

  16. W. T. Tsang andN. A. Olsson,Appl. Phys. Lett. 42 (1983) 922.

    Google Scholar 

  17. H. Asahi, Y. Kawamura andK. Wakita,Proc. 9th Int. Semiconductor Laser Conference, Rio de Janeiro, Brazil, 1984, p. 82.

  18. A. Kasukawa, R. Bhat, C. E. Zah et al.,Electron. Lett. 27 (1991) 1063.

    Google Scholar 

  19. A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza andT. P. Lee,Appl. Phys. Lett. 59 (1991) 2486.

    Google Scholar 

  20. R. W. Glew, B. Garrett andP. D. Greene,Electron. Lett. 25 (1989) 1103.

    Google Scholar 

  21. M. J. Mondry, Z. M. Chuang, M. G. Peters andL. A. Coldren,Electron. Lett. 28 (1992) 1471.

    Google Scholar 

  22. C. E. Zah, R. Bhat, F. J. Favire et al.,Electron. Lett. 28 (1992) 2323.

    Google Scholar 

  23. W. J. Fritz, L. B. Bauer andC. S. Miller,27th Annual Proc. Reliability Phys., 1989, p. 59.

  24. P. W. McIlroy, A. Kurobe andY. Uematsu,IEEE J. Quantum Electron. QE-21 (1985) 1958.

    Google Scholar 

  25. A. R. Adams, M. Asada, Y. Suematsu andS. Arai,Jpn. J. Appl. Phys. 19 (1980) L621.

    Google Scholar 

  26. I. Joindot andJ. L. Beylat,Electron. Lett. 29(7) (1993) 604.

    Google Scholar 

  27. G. Fuchs, J. Hörer, A. Hangleiter et al.,Appl. Phys. Lett. 60 (1992) 231.

    Google Scholar 

  28. R. Bhat, C. E. Zah, M. A. Koza et al.,J. Crystal Growth 145 (1994) 858.

    Google Scholar 

  29. H. Yamada, T. Terakado, Y. Sasaki et al., Proc. 18th Eur. Conf. Optical Communication, Berlin, Germany, 1992, vol. 1, p. 1.

  30. M. Ishikawa, T. Fukushima, R. Nagarajan andJ. E. Bowers,Appl. Phys. Lett. 61 (1992) 396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zah, C.E., Bhat, R. & Lee, T.P. High-temperature operation of AlGaInAs/InP lasers1994. Opt Quant Electron 28, 463–473 (1996). https://doi.org/10.1007/BF00943614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00943614

Keywords

Navigation