Skip to main content
Log in

Generalized fracture mechanics of ductile steels

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The generalized fracture mechanics approach is applied to two ductile steels, namely mild steel and 18/8 stainless steel in plane stress. The theory defines a fracture parameter\(\mathcal{T}\), which is a truly plastic analogue of theJ contour integral and, for an edge crack specimen, is given by

$$\mathcal{T} = k_1 ( \in _0 )cW_{0_c } $$

wherek 1 is an explicit function,c is the crack length andε 0, W0c are respectively the strain and input energy density at fracture, remote from the crack. The functionk 1(ε o) is derived experimentally and the constancy of\(\mathcal{T}\) with respect to crack length and applied load is demonstrated. The variation of\(\mathcal{T}\) with crack extension during slow growth is investigated, as is the rate dependence of\(\mathcal{T}\) in mild steel.

Résumé

On applique l'approache généralisée de la mécanique de rupture à deux aciers ductiles, à savoir l'acier doux et l'acier inoxydable 18/8 soumis à état plan de tension. La théorie définit un paramètre de rupture\(\mathcal{T}\) qui est en fait l'homologue plastique de l'intégrale de contourJ et qui, dans le cas d'une éprouvette fissurée sur ses bords, est donnée par\(\mathcal{T} = k_1 ( \in _0 )cW_{0_c } \). Dans cette expression,k 1 est une fonction explicite,c est la longueur de la fissure etε 0,cW0c sont respectivement la dilation et la densité d'énergie appliquée au moment de la rupture et ce à une certaine distance de la fissure. La fonctionk 1 est dérivée par voie expérimentale et on démontre la constance de\(\mathcal{T}\) vis-à-vis de la longueur de la fissure et de la charge appliquée. La variation de\(\mathcal{T}\) avec l'extension de la fissure au cours de la croissance lente est étudiée ainsi que, dans le cas de l'acier doux, la dépendance de\(\mathcal{T}\) vis-à-vis de la vitesse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Turner, inPost-yield fracture mechanics, Ed. D.G.H. Latzko, Applied Science Publishers (1979) 23–210.

  2. J.D. Landes and J.A. Begley,loc. cit. 211–254.

  3. T.K. Hellen,loc. cit. 255–286.

  4. D.G.H. Latzko,loc. cit. 287–292.

  5. J.D. Landes and J.A. Begley, ASTM-STP 514 (1972) 1–23.

    Google Scholar 

  6. J.P. Hutchinson and P.C. Paris, inElastic-Plastic Fracture, Philadelphia (1979) 37–64.

  7. E. H. Andrews and B.J. Walker,Proceedings Royal Society, London A 325 (1971) 57–79.

    Google Scholar 

  8. E.H. Andrews,Journal of Materials Science 9 (1974) 887–894.

    Google Scholar 

  9. E.H. Andrews and Y. Fukahori,Journal of Materials Science 12 (1977) 1307–1319.

    Google Scholar 

  10. S.R. Barnes,Fracture mechanics of elastic-plastic solids. Ph.D. Thesis, University of London (1980).

  11. E.H. Andrews and E.W. Billington,Journal of Materials Science 11 (1976) 1354–1361.

    Google Scholar 

  12. E.H. Andrews,Macromolecular Chemistry and Physics Supplement 2 (1979) 189–206.

    Google Scholar 

  13. E.H. Andrews and A.J. Kinloch,Proceedings Royal Society, London A 332 (1973) 385–399.

    Google Scholar 

  14. E.H. Andrews and A. Stevenson,Journal of Adhesion 11 (1980) 17–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, E.H., Bhatty, J.I. Generalized fracture mechanics of ductile steels. Int J Fract 20, 65–77 (1982). https://doi.org/10.1007/BF00942165

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942165

Keywords

Navigation