Skip to main content

Prediction of Ductile Fracture in Bainitic Steel with Dependence on Stress States and Loading Orientation

  • Conference paper
  • First Online:
NUMISHEET 2022

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1057 Accesses

Abstract

The influence of stress states and loading direction on ductile fracture of high-strength steels is investigated through a hybrid experimental and numerical approach. The experimental characterization of ductile fracture is carried out by performing tensile tests at room temperature along three different directions on flat specimens with features, including central-hole, notched dog-bone, plane-strain, and shear. In addition, the fracture behavior under the equibiaxial tension state is captured by the bulge test. The anisotropic plastic flow behavior is described by an evolving non-associated plasticity model, capable of representing the anisotropic hardening and evolution of Lankford coefficients. The evolving anisotropy is integrated into a damage mechanics model and further used for the numerical prediction of the stress state and loading orientation dependence of ductile fracture behavior. Different strategies, such as linear transformation and scaling approach, have been adopted to formulate a unified ductile fracture criterion independent of loading orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gu G, Mohr D (2015) Anisotropic Hosford-Coulomb fracture initiation model: theory and application. Eng Fract Mech 147:480–497

    Article  Google Scholar 

  2. Jia Y, Bai Y (2015) Experimental study on the mechanical properties of AZ31B-H24 magnesium alloy sheets under various loading conditions. Int J Fract 197:25–48

    Article  Google Scholar 

  3. Lou Y, Yoon JW (2017) Anisotropic ductile fracture criterion based on linear transformation. Int J Plast 93:3–25

    Article  CAS  Google Scholar 

  4. Park N, Huh H, Lim SJ, Lou Y, Kang YS, Seo MH (2017) Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. Int J Plast 96:1–35

    Article  Google Scholar 

  5. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourgoghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheets—part I: theory. Int J Plast 19:1297–1319

    Article  CAS  Google Scholar 

  6. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond Ser-A 193:281–297

    Article  CAS  Google Scholar 

  7. Stoughton TB, Yoon JW (2009) Anisotropic hardening and non-associated flow in proportional loading of sheet metals. Int J Plast 25:1777–1817

    Article  CAS  Google Scholar 

  8. Stoughton TB (2002) A non-associated flow rule for sheet metal forming. Int J Plast 18:687–714

    Article  Google Scholar 

  9. Kondori B, Madi Y, Besson J, Benzerga AA (2019) Evolution of the 3D plastic anisotropy of HCP metals: experiments and modeling. Int J Plast 117:71–92

    Article  CAS  Google Scholar 

  10. Lee E-H, Stoughton TB, Yoon JW (2017) A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. Int J Plast 99:120–143

    Article  Google Scholar 

  11. Lian J, Shen F, Münstermann S (2018) Evolution of plastic anisotropy and strain rate sensitivity. J Phys: Conf Ser 1063(3):012063. https://doi.org/10.1088/1742-6596/1063/1/012063

  12. Lian J, Shen F, Jia X, Ahn D-C, Chae D-C, Münstermann S, Bleck W (2018) An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction. Int J Solids Struct 151:20–44

    Article  Google Scholar 

  13. Lian J, Shen F, Liu W, Münstermann S (2018) Forming limit prediction by an evolving non-quadratic yield criterion considering the anisotropic hardening and r-value evolution. AIP Conf Proc 1960:150008

    Article  Google Scholar 

  14. Shen F, Münstermann S, Lian J (2019) Forming limit prediction by the Marciniak–Kuczynski model coupled with the evolving non-associated Hill48 plasticity model. J Mater Process Technol 287:116384. https://doi.org/10.1016/j.jmatprotec.2019.116384

  15. Besson J (2009) Continuum models of ductile fracture: a review. Int J Damage Mech 19:3–52

    Article  Google Scholar 

  16. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  17. Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18:237–252

    Article  Google Scholar 

  18. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  19. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol-Trans ASME 107:83–89

    Google Scholar 

  20. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24:1071–1096

    Article  CAS  Google Scholar 

  21. Mu L, Zang Y, Wang Y, Li XL, Stemler PMA (2018) Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming. Int J Mech Sci 141:408–423

    Google Scholar 

  22. Bai Y, Wierzbicki T (2010) Application of extended Mohr-Coulomb criterion to ductile fracture. Int J Fract 161:1–20

    Article  CAS  Google Scholar 

  23. Mu L, Jia Z, Ma Z, Shen F, Sun Y, Zang Y (2020) A theoretical prediction framework for the construction of a fracture forming limit curve accounting for fracture pattern transition. Int J Plast 129:102706

    Google Scholar 

  24. Lou Y, Huh H (2013) Prediction of ductile fracture for advanced high strength steel with a new criterion: experiments and simulation. J Mater Process Technol 213:1284–1302

    Article  CAS  Google Scholar 

  25. Mohr D, Marcadet SJ (2015) Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int J Solids Struct 67–68:40–55

    Article  Google Scholar 

  26. Lian J, Sharaf M, Archie F, Münstermann S (2013) A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets. Int J Damage Mech 22:188–218

    Article  Google Scholar 

  27. Jia Y, Bai Y (2016) Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. Int J Mech Sci 115–116:516–531

    Article  Google Scholar 

  28. Lou Y, Yoon JW (2019) Alternative approach to model ductile fracture by incorporating anisotropic yield function. Int J Solids Struct 164:12–24

    Article  CAS  Google Scholar 

  29. Park N, Huh H, Yoon JW (2018) Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain. Int J Solids Struct 151:181–194

    Article  CAS  Google Scholar 

  30. Shen F, Lian J, Münstermann S, Kokotin V, Pretorius T (2018) An experimental and numerical investigation of the anisotropic plasticity and fracture properties of high strength steels from laboratory to component scales. Procedia Struct Integr 13:1312–1317

    Article  Google Scholar 

  31. Shen F, Münstermann S, Lian J (2020) Investigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics model. Eng Fract Mech 227:106900

    Article  Google Scholar 

  32. Aretz H (2007) Numerical analysis of diffuse and localized necking in orthotropic sheet metals. Int J Plast 23:798–840

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhe Lian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, F., Münstermann, S., Lian, J. (2022). Prediction of Ductile Fracture in Bainitic Steel with Dependence on Stress States and Loading Orientation. In: Inal, K., Levesque, J., Worswick, M., Butcher, C. (eds) NUMISHEET 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-06212-4_35

Download citation

Publish with us

Policies and ethics