Skip to main content
Log in

Dynamic fracture of unidirectional graphite fiber composite strips

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An approximate equation of motion is derived and is used in the analysis of a dynamically propagating crack in a highly orthotropic fiber composite infinite strip subjected to constant displacement Mode I loading. With the use of Fourier transforms, the problem is reduced to an equation which is solved by the Wiener-Hopf technique. The dynamic stress intensity factor is derived and is expressed as the product of a velocity correction factor and a static stress intensity factor. The corresponding dynamic energy release rate is derived also and it is found not to be explicitly dependent upon the crack-tip velocity. It is found experimentally that the long strip configuration subjected to constant extensional displacement can simulate constant crack propagation velocities. Accordingly, the model's dynamic energy release rate is used to determine the dynamic fracture energy (toughness) of 90° Hercules AS/3501-6 graphite epoxy composites.

Résumé

On déduit une équation approximative de mouvement et on l'utilise dans l'analyse d'une fissure se propageant de manière dynamique dans une bande infinie en fibres composites à haute orthotropicité sujette à une mise en charge de mode I à déplacement constant. En utilisant les transformées de Fourier, on ramène le problème à une équation qui est solutionable par la technique de Wiener-Hopf. Le facteur d'intensité de contrainte dynamique en est déduit et est exprimé comme le produit d'un facteur de correction de vitesse et d'un facteur d'intensité de contrainte statique. Le taux de relaxation d'énergie dynamique correspondante est également déduit et l'on trouve qu'il n'est pas explicitement dépendant de la vélocité à la pointe de la fissure. On trouve par voie expérimentale que la configuration d'une bande longue soumis à des déplacements constants en traction permet de simuler des vitesses de propagation constante. Dès lors, on utilise le taux de relaxation d'énergie dynamique du modèle à la détermination de l'énergie de rupture dynamique ou ténacité des composites époxygraphites 90° Hercules AS/3501-6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Nilsson,International Journal of Fracture Mechanics 8, No. 4 (1972) 403–411.

    Google Scholar 

  2. T.L. Paxson and R.A. Lucas, inDynamic Crack Porpagation, G.C. Sih (ed.), Noordhoff, Leyden (1973) 415–426.

    Google Scholar 

  3. J.H. Williams, Jr. and P.N. Kousiounelos,Fibre Science and Technology 11, No. 2 (1978) 83–88.

    Google Scholar 

  4. P.N. Kousiounelos, “Dynamic Crack Propagation in Unidirectional Fiber Composites”, Sc.D. Thesis, Dept. of Mechanical Engineering, M.I.T. (May 1979).

  5. P.N. Kousiounelos and J.H. Williams, Jr., Fibre Science and Technology, 13 (1980) 97–118.

    Google Scholar 

  6. P.N. Kousiounelos and J.H. Williams, Jr., Fibre Science and Technology, 14 (1981) 91–97.

    Google Scholar 

  7. H. Kolsky,Stress Waves in Solids, Dover Publications, Inc. (1963).

  8. S.G. Lekhnitskii,Anisotropic Plates, Gordon and Breach Science Publishers, New York.

  9. P.C. Paris and G.C. Sih, in ASTM STP 381, American Society for Testing and Materials (1965) 30–83.

  10. P.N. Kousiounelos, “Fracture of Graphite Fiber Composites”, S.B.-S.M. Thesis, Department of Mechanical Engineering, M.I.T. (May 1976).

  11. W.G. Knauss,Journal of Applied Mechanics 33 (1966) 356–362.

    Google Scholar 

  12. B. Noble,Methods Based on the Wiener-Hopf Technique, Pergamon Press (1958).

  13. G.C. Sih and E.P. Chen, inMechanics of Fracture, Vol. 4,Elastodynamic Crack Problems, G.C. Sih (ed.) 75–2.

  14. B.V. Kostrov and L.V. Nikitin,Archiwum Mechaniki Stosowanej 6, 22 (1970) 749–760.

    Google Scholar 

  15. K.B. Broberg, inRecent Progress in Applied Mechanics, K.B. Broberg et al. (eds.), Almquist and Wicksell, Stockholm (1967) 125–151.

    Google Scholar 

  16. Erdelyiet al., Tables of Integral Transforms, McGraw Hill Book Co., Inc. (1954).

  17. L.B. Freund, inThe Mechanics of Fracture, F. Erdogan (ed.), AMD Vol. 19, The American Scoiety of Mechanical Engineers (1976) 105–134.

  18. Hercules Incorporated Systems Group, “Preparation of Laminate Test Specimens from Graphite Prepreg”, HD-SG-2-6005C, September 15, 1976.

  19. J.H. Williams, Jr., P.N. Kousiounelos and S.S. Lee, “Dynamic Fracture in Orthotropic Fiber Composites”, Naval Air Systems Command, Contract No. N00019-77-C-0294 (May 1978).

  20. J.H. Williams, Jr., H. Nayeb-Hashemi and S.S. Lee, “Ultrasonic Attenuation and Velocity in AS/3501-6 Graphite Fiber Composite”, Composite Materials and Nondestructive Evaluation Laboratory, M.I.T. (August 1979).

  21. J.H. Williams, Jr. and P.N. Kousiounelos,Engineering Fracture Mechanics 14 (1981) 165–170.

    Google Scholar 

  22. J.H. Williams, Jr., S.S. Lee and P.N. Kousiounelos,Engineering Fracture Mechanics, 14 (1981) 427–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kousiounelos, P.N., Williams, J.H. Dynamic fracture of unidirectional graphite fiber composite strips. Int J Fract 20, 47–63 (1982). https://doi.org/10.1007/BF00942164

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942164

Keywords

Navigation